Skip to main content
Log in

Unsteady flow and heat transfer analysis of an impinging synthetic jet

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper focuses on the analysis of unsteady flow and heat transfer regarding an axisymmetric impinging synthetic jet on a constant heat flux disc. Synthetic jet is a zero net mass flux jet that provides an unsteady flow without any external source of fluid. Present results are validated against the available experimental data showing that the SST/k − ω turbulence model is more accurate and reliable than the standard and low-Re k − ε models for predicting heat transfer from an impinging synthetic jet. It is found that the time-averaged Nusselt number enhances as the nozzle-to-plate distance is increased. As the oscillation frequency in the range of 16–400 Hz is increased, the heat transfer is enhanced. It is shown that the instantaneous Nu distribution along the wall is influenced mainly by the interaction of produced vortex ring and wall boundary layer. Also, the fluctuation level of Nu decreases as the frequency is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

D :

Nozzle diameter (m)

f :

Oscillation (diaphragm vibration) frequency (s−1)

H :

Nozzle-to-plate distance (m)

h :

Heat transfer coefficient \( \left( {{\frac{\text{W}}{{{\text{m}}^{ 2} \, {\text{K}}}}}} \right) \)

k :

Turbulence kinetic energy \( \left( {{\frac{{{\text{m}}^{ 2} }}{{{\text{s}}^{ 2} }}}} \right) \)

L 0 :

Stroke length of synthetic jet (m)

N u :

Instantaneous Nusselt number \( \left( { = {\frac{hD}{\kappa }}} \right) \)

Nu′:

Root-mean-squared fluctuations of instantaneous Nusselt number

\( \overline{Nu} \) :

Mean Nusselt number (averaged across the surface)

Nu avg :

Time-averaged Nusselt number in one cycle

Nu s :

Nusselt number of stagnation point

P :

Static pressure (Pa)

P atm :

Atmospheric pressure (Pa)

Re :

Reynolds number \( \left( {{\frac{{\rho U_{ 0} D}}{\mu }}} \right) \)

r :

Radial coordinate (m)

T :

Oscillation (diaphragm vibration) period \( \left( { = {\frac{ 2\pi }{f}}} \right) \)(s)

t :

Time (s)

U 0 :

Equivalent synthetic jet velocity \( \left( {{\frac{\text{m}}{\text{s}}}} \right) \)

u(t):

Velocity \( \left( {{\frac{\text{m}}{\text{s}}}} \right) \)

\( \overline{{u_{i} }} \) :

Mean velocity components (for turbulent velocity) \( \left( {{\frac{\text{m}}{\text{s}}}} \right) \)

u′:

Fluctuation velocity components (for turbulent velocity) \( \left( {{\frac{\text{m}}{\text{s}}}} \right) \)

u max :

Maximum velocity of synthetic jet in one cycle \( \left( {{\frac{\text{m}}{\text{s}}}} \right) \)

y:

Axial coordinate (m)

α:

Thermal diffusivity \( \left( {{\frac{{{\text{m}}^{ 2} }}{\text{s}}}} \right) \)

ε:

Dissipation rate of turbulence kinetic energy

θ:

Temperature (K)

κ:

Thermal conductivity \( \left( {{\frac{\text{W}}{{{\text{m}} \, {\text{K}}}}}} \right) \)

μ:

Dynamic viscosity \( \left( {{\frac{\text{kg}}{{{\text{m}} \, {\text{s}}}}}} \right) \)

μ t :

Turbulent eddy viscosity \( \left( {{\frac{\text{kg}}{{{\text{m}} \, {\text{s}}}}}} \right) \)

ρ:

Density \( \left( {{\frac{\text{kg}}{{{\text{m}}^{ 3} }}}} \right) \)

\( - \rho \overline{{u^{\prime}_{i} u^{\prime}_{j} }} \) :

Reynolds stress \( \left( {{\frac{\text{kg}}{{{\text{m}} \, {\text{s}}^{ 2} }}}} \right) \)

ϕ:

Phase angle (degree)

ω:

Turbulence eddy frequency \( \left( {{\frac{ 1}{\text{s}}}} \right) \)

References

  1. Incropera FP, Dewitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. John Wiley, New York

    Google Scholar 

  2. Lou ZQ, Mujumdar AS, Yap C (2005) Effect of geometric parameters on confined impinging jet heat transfer. Appl Therm Eng 25:2687–2697

    Article  Google Scholar 

  3. Sahoo D, Sharif MR (2004) Numerical modeling of slot-jet impingement cooling of a constant heat flux surface confined by a parallel wall. Int J Therm Sci 43(9):877–887

    Article  Google Scholar 

  4. Wang SJ, Mujumdar AS (2005) A comparative study of five low Reynolds number k − ε models for impingement heat transfer. Appl Therm Eng 25:31–44

    Article  Google Scholar 

  5. Poh HJ, Kumar K, Mujumdar AS (2005) Heat transfer from a pulsed laminar impinging jet. Int Commun Heat Mass Transf 32:1317–1324

    Article  Google Scholar 

  6. Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297

    Article  MathSciNet  MATH  Google Scholar 

  7. Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529

    Article  MathSciNet  Google Scholar 

  8. Mittal R, Rampunggoon R (2002) On the virtual aero shaping effect of synthetic jets. Phys Fluids 14(9):1533–1538

    Article  Google Scholar 

  9. Smith BL, Glezer A (2002) Jet vectoring using synthetic jets. J Fluid Mech 458:1–34

    Article  MATH  Google Scholar 

  10. Smith BL, Glezer A (2005) Vectoring of adjacent synthetic jets. AIAA J 43(10):2117–2124

    Article  Google Scholar 

  11. Chen Y, Liang S, Aung K, Glezer A, Jagoda J (1999) Enhanced mixing in a simulated combustor using synthetic jet actuators. AIAA Paper 99-0449

  12. Mautner T (2004) Application of the synthetic jet concept to low Reynolds number biosensor micro fluidic flows for enhanced mixing. Biosens Bioelectron 19:1409–1419

    Article  Google Scholar 

  13. Mahalinngam R, Glezer A (2001) An actively cooled heat sink integrated with synthetic jets. In: 35th national heat transfer conference, California, USA

  14. Garg J, Arik M, Stanton W, Saddoughi S (2005) Meso-scale pulsating jets for electronics cooling. J Electron Packag 127:503–511

    Article  Google Scholar 

  15. Pavlova A, Amitay M (2006) Electronic cooling using synthetic jet impingement. J Heat Transf 128:897–907

    Article  Google Scholar 

  16. Valiorgue P, Persoons T, McGuinn A, Murray DB (2009) Heat transfer mechanisms in an impinging synthetic jet for a small jet-to-surface spacing. Exp Therm Fluid Sci 33:597–603

    Article  Google Scholar 

  17. Bazdidi-Tehrani F, Jahromi M, Karami M, Javadi A (2008) Numerical analysis of a zero net mass flux jet in a quiescent medium. In: Proceedings of 16th annual conference of CFD society Canada, University of Saskatchewan, Saskatoon, Canada

  18. Vukasinovic J, Glezer A (2003) Spot-cooling by confined, impinging synthetic jet. In: Proceedings of HT2003: 2003 ASME Summer Heat Transfer Conference, Las Vegas, USA

  19. Timchenko V, Reizes J, Leonardi E (2007) An evaluation of synthetic jets for heat transfer enhancement in air cooled micro-channels. Int J Numer Methods Heat Fluid Flow 17(3):263–283

    Article  Google Scholar 

  20. McGuinn A, Persoons T, Valiorgueet P, O’Donovan TS, Murray DB (2008) Heat transfer measurements of an impinging synthetic air jet with constant stroke length. In: 5th European thermal sciences conference, The Netherlands

  21. Launder BE, Sandham ND (2002) Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  23. Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Bazdidi-Tehrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazdidi-Tehrani, F., Karami, M. & Jahromi, M. Unsteady flow and heat transfer analysis of an impinging synthetic jet. Heat Mass Transfer 47, 1363–1373 (2011). https://doi.org/10.1007/s00231-011-0801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0801-0

Keywords

Navigation