Skip to main content
Log in

Numerical and experimental studies of natural convective heat transfer from vertical and inclined narrow isothermal flat plates

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Natural convective heat transfer from an isothermal narrow flat plate embedded in a plane adiabatic surface and inclined at moderate positive and negative angles to the vertical has been numerically and experimentally studied. The solution has the Rayleigh number, the dimensionless plate width, the angle of inclination, and the Prandtl number as parameters. Attention was restricted to a Prandtl number of 0.7. The numerical results have been obtained for Rayleigh numbers between 103 and 107 for dimensionless plate widths of between 0.3 and 1.2 and for angles of inclination between +45° and −45°. In the experimental study, results have been obtained for Rayleigh numbers between 4 × 102 and 105 for dimensionless plate widths of 0.4 and 2.5 and for angles of inclination between +45° and −45° to the vertical. Empirical equations for the heat transfer rate have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

A :

Heat transfer area of the heated plate (m2)

g :

Gravitational acceleration (m s−2)

h :

Height of heated plate (m)

h c :

Mean heat transfer coefficient (W m−2 K−1)

I :

Current pass through the heater (A)

V :

Voltage drop across the heater (V)

K :

Thermal resistance of Plexiglass (W m−2 K−1)

k :

Thermal conductivity of fluid (W m−1 K−1)

Nu :

Mean Nusselt number based on h and on (T H  − T F )

Nu 0 :

Mean Nusselt number when edge effects are negligible

Nu y :

Local Nusselt number based on y and on (T H  − T F )

Nu L :

Local Nusselt number based on h and on (T H  − T F )

Nu memp :

Mean Nusselt number given by correlation equation for vertical and for inclined plate facing up and facing down

P :

Dimensionless pressure

p :

Pressure (Pa)

p F :

Pressure in fluid (Pa)

Pr :

Prandtl number

\( \bar{q}^{\prime } \) :

Mean heat transfer rate per unit area (W m−2)

\( q_{x}^{\prime } \) :

Local heat transfer rate per unit area (W m−2)

\( Q_{\text{conv}} \) :

Total rate of heat loss by convection (W)

\( Q_{\text{cond}} \) :

Total rate of heat loss by conduction (W)

\( Q_{\text{rad}} \) :

Total rate of heat loss by radiation (W)

Ra :

Rayleigh number based on h and on (T H  − T F )

Ra y :

Rayleigh number based on y and on (T H  − T F )

T :

Temperature (K)

T F :

Temperature of fluid (K)

T H :

Temperature of plate (K)

\( T_{{w_{\text{avg}} }} \) :

Average temperature of the plate (K)

U X :

Dimensionless velocity component in X direction

u x :

Velocity component in x direction (m s−1)

u r :

Reference velocity (m s−1)

U Y :

Dimensionless velocity component in Y direction

u y :

Velocity component in y direction (m s−1)

U Z :

Dimensionless velocity component in Z direction

u z :

Velocity component in z direction (m s−1)

w :

Width of plate (m)

W :

Dimensionless width of plate, w/h

X :

Dimensionless horizontal coordinate normal to plate

x :

Horizontal coordinate normal to plate (m)

Y :

Dimensionless vertical coordinate

y :

Vertical coordinate (m)

Z :

Dimensionless horizontal coordinate in plane of plate

z :

Horizontal coordinate in plane of plate (m)

α :

Thermal diffusivity (m2 s−1)

β :

Bulk expansion coefficient (K−1)

φ :

Angle of inclination from the vertical (Degrees)

ν :

Kinematic viscosity (m2 s−1)

θ :

Dimensionless temperature

ε :

Emissivity

References

  1. Saunders OA (1936) Effect of pressure upon natural convection in air. Proc R Soc Lond 157:278–291

    Article  Google Scholar 

  2. Sparrow EM, Gregg JL (1956) Laminar free convection from a vertical plate with uniform surface heat flux. ASME Trans 78:435–440

    Google Scholar 

  3. Eckert ERG, Jackson TW (1951) Analysis of turbulent free convection boundary layer on flat plate. Washington, DC NACA Tech. Rept. 1015

  4. Churchill SW, Chu HHS (1975) Correlating equations for laminar and turbulent free convection from a vertical plate. Int J Heat Mass Transf 18:1323–1329

    Article  Google Scholar 

  5. Oosthuizen PH (1965) An experimental analysis of the heat transfer by laminar free convection from a narrow vertical plate. J South Afr Inst Mech Eng 14(7):153–158

    Google Scholar 

  6. Oosthuizen PH (1967) A further experimental study of the laminar free convective heat transfer from narrow vertical plates in air. J South Afr Inst Mech Eng 16(9):182–184

    Google Scholar 

  7. Oosthuizen PH, Paul JT (1985) Numerical study of free convective heat transfer from narrow vertical flat plates. In: Proceedings of the 10th Canadian congress of applied mechanics, pp C23–C24

  8. Oosthuizen PH, Henderson C (1987) Edge effects on forced and free convective laminar boundary flow over a flat plate. Convective Transport, vol HTD-82. In: Proceedings of the ASME winter annual meeting, pp 149–155

  9. Park KA, Bergles AE (1987) Natural convection heat transfer characteristics of simulated microelectronic chips. J Heat Transf Trans ASME 109:90–96. doi:10.1115/1.3248074

    Article  Google Scholar 

  10. Baker E (1972) Liquid cooling of microelectronic devices by free and forced convection. Microelectron Reliability 11(2):213–222. doi:10.1016/0026-2714(72)90704-4

    Article  Google Scholar 

  11. Baker E (1973) Liquid immersion cooling of small electronic devices. Microelectron Reliability 12(2):163–173. doi:10.1016/0026-2714(73)90462-9

    Article  Google Scholar 

  12. Noto K, Matsumoto R (1985) Three-dimensional analysis of laminar natural convection around a vertical flat plate. Numerical methods in laminar and turbulent flow. In: Proceedings of the 4th international heat transfer conference 1, pp 865–877

  13. Noto K, Matsumoto R (1987) Three-dimensional numerical of natural convective heat transfer from a vertical flat plate. In: Proceedings of the 1987 ASME-JSME thermal engineering joint conference 5, pp 1–8

  14. Oosthuizen PH, Paul JT (2006) Natural convective heat transfer from a narrow isothermal vertical flat plate. Paper AIAA 2006 3397 Proceedings of the 9th AIAA/ASME joint thermophysics and heat transfer conference

  15. Oosthuizen PH, Paul JT (2007) Natural convective heat transfer from a narrow vertical isothermal flat plate with different edge conditions. In: Proceedings of the 15th annual conference of the computational fluid dynamics society of Canada, Toronto, p 7, 27–31 May 2007

  16. Rich BR (1953) An investigation of heat transfer from an inclined flat plate by natural convection. Trans Am Soc Mech Eng 75:489–499

    Google Scholar 

  17. Vliet GC (1969) Natural convection local heat transfer on constant-heat-flux inclined surfaces. Trans ASME J Heat Transf 91(4):511–516

    Google Scholar 

  18. Vliet GC, Ross DC (1975) Turbulent natural convective on upward and downward facing inclined constant heat flux surfaces. ASME J Heat Transf 91(4):511–517

    Google Scholar 

  19. Hassan KE, Mohamed SA (1970) Natural convection from isothermal flat surfaces. Int J Heat Mass Transf 13(12):1873–1886. doi:10.1016/0017-9310(70)90090-6

    Article  Google Scholar 

  20. Michiyoshi I (1964) Heat transfer from inclined thin flat plate by natural convection. Bull JSME 7(28):745–750

    Google Scholar 

  21. Kierkus WT (1968) An analysis of laminar free convection flow and heat transfer about an inclined isothermal plate. Int J Heat Mass Transf 11(2):241–252. doi:10.1016/0017-9310(68)90153-1

    Article  Google Scholar 

  22. Fuji T, Imura H (1972) Natural-convection heat transfer from a plate with arbitrary inclination. Int J Heat Mass Transf 15(4):755–767

    Article  Google Scholar 

  23. Sparrow EM, Ramsey JW (1979) Effect of finite width on heat transfer and fluid flow about an inclined rectangular plate. J Heat Transf 101(2):199–204

    Article  Google Scholar 

  24. King JA, Reible DD (1991) Laminar natural convective heat transfer from inclined surfaces. Int J Heat Mass Transf 34(7):1901–1904. doi:10.1016/0017-9310(91)90165-B

    Article  Google Scholar 

  25. Al-Arabi M, Sakr B (1988) Natural convection heat transfer from inclined isothermal flat plates. Int J Heat Mass Transf 31(3):559–566. doi:10.1016/0017-9310(88)90037-3

    Article  Google Scholar 

  26. Gryzagoridis J, Klingenberg BE (1986) Natural convection from upper and lower surfaces of an inclined isothermal plate. Int Commun Heat Mass Transf 13(2):163–169. doi:10.1016/0735-1933(86)90056-4

    Article  Google Scholar 

  27. Wei JJ, Yu B, Wang HS, Tao WQ (2002) Numerical study of simultaneous natural convection heat transfer from both surfaces of a uniformly heated thin plate with arbitrary inclination. Heat Mass Transf 38(4–5):309–317. doi:10.1007/s002310100276

    Google Scholar 

  28. Sparrow EM, Husar RB (1969) Longitudinal vortices in natural convection flow on inclined plates. J Fluid Mech 37(2):251–255. doi:10.1017/S0022112069000528

    Article  Google Scholar 

  29. Lloyd JR, Sparrow EM (1970) On the instability of natural convection flow on inclined plates. J Fluid Mech 42(3):465–470. doi:10.1017/S0022112070001416

    Article  Google Scholar 

  30. Komori K, Kito S, Nakamura T, Inaguma Y, Inagaki T (2001) Fluid flow and heat transfer in the transition process of natural convection over an inclined plate. Heat Transf Asian Res 30(8):648–659. doi:10.1002/htj.10005

    Article  Google Scholar 

  31. Kimura F, Yoshioka T, Kitamura K, Yamaguchi M, Asami T (2002) Fluid flow and heat transfer of natural convection at slightly inclined, upward-facing, heated plate. Heat Transf Asian Res 31(5):362–375

    Article  Google Scholar 

  32. Kimura F, Kitamura K, Yamaguchi M, Asami T (2003) Fluid flow and heat transfer of natural convection adjacent to upward-facing inclined heated plates. Heat Transf Asian Res 32(3):278–291

    Article  Google Scholar 

  33. Kitamura K, Chen X-A, Kimura F (2001) Turbulent transition mechanisms of natural convection over upward-facing horizontal plates. JSME Int J Ser B 44(1):90–98. doi:10.1299/jsmeb.44.90

    Article  Google Scholar 

  34. Jeschke P, Beer H (2001) Longitudinal vortices in a laminar natural convective boundary layer flow on an inclined flat plate and their influence on heat transfer. J Fluid Mech 432:313–339

    MATH  Google Scholar 

  35. Oosthuizen PH, Kalendar A (2008) Natural convective heat transfer from an inclined narrow isothermal flat plate. Paper HT2008-56190 Proceedings: 2008 ASME summer heat transfer conference

  36. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1:3–17

    Article  Google Scholar 

  37. Moffat RJ (1983) Using uncertainty analysis in the planning of an experiment. J Fluids Eng Trans ASME 107(2):173–178

    Article  MathSciNet  Google Scholar 

  38. Kays W, Grawford M, Weigand B (2005) Convective heat and mass transfer. McGraw-Hill, New York

    Google Scholar 

  39. Oosthuizen PH, Naylor D (1999) An introduction to convective heat transfer analysis. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Public Authority for Applied Education and Training of Kuwait.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulrahim Kalendar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalendar, A., Oosthuizen, P.H. Numerical and experimental studies of natural convective heat transfer from vertical and inclined narrow isothermal flat plates. Heat Mass Transfer 47, 1181–1195 (2011). https://doi.org/10.1007/s00231-011-0778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0778-8

Keywords

Navigation