A simple and accurate numerical network flow model for bionic micro heat exchangers

Abstract

Heat exchangers are often associated with drawbacks like a large pressure drop or a non-uniform flow distribution. Recent research shows that bionic structures can provide possible improvements. We considered a set of such structures that were designed with M. Hermann’s FracTherm® algorithm. In order to optimize and compare them with conventional heat exchangers, we developed a numerical method to determine their performance. We simulated the flow in the heat exchanger applying a network model and coupled these results with a finite volume method to determine the heat distribution in the heat exchanger.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Hermann M (2005) Bionische Ansätze zur Entwicklung energieeffizienter Fluidsysteme für den Wärmetransport, Ph.D. thesis, University of Karlsruhe, Germany

  2. 2.

    Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, Berlin

    MATH  Google Scholar 

  3. 3.

    Klein P, Maleshkov D, Asenov M, A framework for concurrency in numerical simulations using lock free data structures: the Graph Parallel Architecture GraPA. Accepted paper PDCAT’08

  4. 4.

    Fraas AP (1989) Heat exchanger design, 2nd edn. Wiley, New York

    Google Scholar 

  5. 5.

    Lienhard IV JH, Lienhard V JH (2002) A heat transfer textbook, 3rd edn. Phlogiston Press, Cambridge

  6. 6.

    Incropera FP, Dewitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New York

    Google Scholar 

  7. 7.

    Prithiviraj M, Andrews MJ (1998) Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: foundation and fluid mechanics. Num Heat Transf, Part A Appl 33(8):799–816

    Article  Google Scholar 

  8. 8.

    Prithiviraj M, Andrews MJ (1998) Three dimensional numerical simulation of shell-and-tube heat exchangers. Part II: Heat transfer. Num Heat Transf, Part A: Appl 33(8):817–828

    Article  Google Scholar 

  9. 9.

    Nunez T (2001) Charakterisierung und Bewertung von Adsorbentien frmetransformationsanwendungen, Ph.D. thesis, University of Freiburg, Germany

  10. 10.

    Karagiorgas M, Meunier F (1987) The dynamics of a solid-adsorption heat pump connected with outside heat sources of fine capacity. Heat Recovery Systems CHP 7(3):285–299

    Article  Google Scholar 

  11. 11.

    Sakoda A, Suzuki M (1986) Simultaneous transport of heat and adsorbate in closed type adsorption cooling system utilizing solar heat. J. Solar Energy Eng 108:239–245

    Article  Google Scholar 

  12. 12.

    Knaber P, Angermann L (2003) Numerical methods for elliptic and parabolic partial differential equations. Springer, New York

    Google Scholar 

  13. 13.

    Pieper M, Klein P (2010) Numerical solution of the heat equation with nonlinear, time derivative dependent source term. Int J Num Eng 84(10):1205–1221

    Google Scholar 

  14. 14.

    Chertok A, Kurganov A, Petrova G (2009) Fast explicit operator splitting method for convection-diffusion equations. Int. J. Numer. Meht. Fluids 59(3):309–332

    Article  Google Scholar 

  15. 15.

    Strang G (1968) On the construction and comparison of difference schemes. SIAM J Num Anal 5:506–517

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn, vol 6 (Course on Theoretical Physics). Butterworth-Heinemann, Oxford

  17. 17.

    Maier RS, Bernard RS, Grunau DW (1996) Boundary conditions for the lattice Boltzmann method. Phys. Fluids 8(7):1788–1801

    Google Scholar 

  18. 18.

    Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids 9(6):1591–1598

    Google Scholar 

  19. 19.

    Pieper M, Klein P (2010) Periodic homogenization for heat conduction with adsorption effects in non-periodic, porous media. Int J Num Eng

  20. 20.

    Booker AJ, Dennis JE Jr, Frank PD, Serafini DB, Torczon V, Trosset MW (1999) A rigorous framework for optimization of expensive functions by surrogates. Struc Multidisciplinary Optimization 17(1):1–13

    Google Scholar 

Download references

Acknowledgments

We would like to thank Fraunhofer for the financial support of the THOKA project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Pieper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pieper, M., Klein, P. A simple and accurate numerical network flow model for bionic micro heat exchangers. Heat Mass Transfer 47, 491–503 (2011). https://doi.org/10.1007/s00231-010-0739-7

Download citation

Keywords

  • Heat Exchanger
  • Mass Flow Rate
  • Lattice Boltzmann Method
  • Parallel Channel
  • Heat Exchanger Plate