Skip to main content
Log in

Thermal transport and performance analysis of pressure- and electroosmotically-driven liquid flow microchannel heat sink with wavy wall

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study investigates the microchannel heat sinks (MCHSs) with smooth and wavy wall for pure electroosmotic flow (EOF), pressure-driven flow (PDF) and combined electroosmotic and pressure-driven flow (PDF + EOF). A three-dimensional numerical analysis was performed for EOF, PDF and combined flow (PDF + EOF) through finite volume analysis. The EOF was combined with the PDF to enhance the flow rate and to reduce the thermal resistance of the MCHS. The effect of wall waviness on electroosmosis and thermal performance of the MCHS was critically investigated for flow rate, friction factor, Nusselt number, thermal resistance and pumping power. The design variables related to the wavelength and amplitude and width of microchannel were investigated for their effect on the overall thermal performance and pumping power. The electroosmosis not only increases the flow rate but also suppresses the secondary flow developed due to the topology of the microchannel walls. The non-uniformity of the velocity and temperature is reduced due to the application of the EOF in a PDF and combined flow (PDF + EOF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

a w :

Amplitude of the wall profile

A c :

Cross-section area of the microchannel

A s :

Surface area of substrate base

c p :

Specific heat

d h :

Hydraulic diameter of the channel

e :

Fundamental electric charge

f :

Friction factor

E :

Electric field vector

h :

Heat transfer coefficient

h c :

Microchannel depth

k :

Thermal conductivity

k b :

Boltzmann constant

k e :

Electrical conductivity

l x , l y , l z :

Length, width and height of the heat sink, respectively

l w :

Wavelength of the wall profile

n :

Ionic number concentration

n m :

Number of microchannels in the heat sink

Nu :

Nusselt number

p, Δp:

Pressure and pressure drop, respectively

p c :

Pitch of the microchannels (w c  + w w )

P :

Pumping power

q :

Heat flux

\( \dot{q} \) :

Joule heating

Re :

Reynolds number

R th :

Thermal resistance

T, ΔT:

Temperature and temperature drop, respectively

u :

Liquid velocity in microchannel

w c :

Width of microchannel

w w :

Fin width

x, y, z :

Orthogonal coordinate system

z b :

Number of valence

α :

Design variable, w c /h c

α e :

Temperature coefficient of k e

β :

Design variable, w w /h c

ε :

Permittivity of fluid

γ :

Design variable, l w /l x

μ :

Dynamic viscosity

ρ :

Density

ρ e :

Electric charge density

Ψ:

Electric potential due to charge distribution within Debye layer

avg :

Average value

b, ∞:

Bulk value

cal :

Calorific value

cond :

Conductive value

conv :

Convective value

f :

Fluid

i :

Ith specy

in :

Inlet

max :

Maximum value

0 :

Value at the base temperature

out :

Outlet

s :

Substrate

fs :

Fluid solid interface

References

  1. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL 2(5):126–129

    Article  Google Scholar 

  2. Kawano K, Minakami K, Iwasaki H, Ishizuka M (1998) Development of micro channels heat exchanging. In: Nelson RA Jr, Swanson LW, Bianchi MVA, Camci C (eds) Application of heat transfer in equipment systems, and education. ASME, New York, HTD-361-3/PID-3:173–180

  3. Knight RW, Hall DJ, Goodling JS, Jaeger RC (1992) Heat sink optimization with application to microchannels. IEEE Trans Compon Hybrids Manufact Technol 15(5):832–842

    Article  Google Scholar 

  4. Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45:2549–2565

    Article  Google Scholar 

  5. Qu W, Mudawar I (2002) Analysis of three dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45(19):3973–3985

    Article  MATH  Google Scholar 

  6. Toh KC, Chen XY, Chai JC (2002) Numerical computation of fluid flow and heat transfer in microchannels. Int J Heat Mass Transf 45:5133–5141

    Article  MATH  Google Scholar 

  7. Liu D, Garimella SV (2005) Analysis and optimization of the thermal performance of microchannel heat sinks. Int J Num Meth Heat Fluid flow 15(1):7–26

    Article  MATH  Google Scholar 

  8. Yener Y, Kakac S, Avelino M, Okutucu T (2005) Single-phase forced convection in microchannels: a state-of-the-art-review. In: Kakac S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) Microscale heat transfer: fundamentals and applications. Springer, Netherlands, pp 1–24

    Chapter  Google Scholar 

  9. Herwig H, Hausner O (2003) Critical view on “new results in micro-fluid mechanics”: an example. Int J Heat Mass Transf 46:935–937

    Article  Google Scholar 

  10. Herwig H, Mahulikar SP (2006) Variable property effects in single-phase incompressible flows through microchannels. Int J Therm Sci 45:977–981

    Article  Google Scholar 

  11. Li Z, Huai X, Tao Y, Chen H (2007) Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks. Appl Therm Eng 27:2803–2814

    Article  Google Scholar 

  12. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  13. Joshi Y, Wei X (2005) Micro and meso scale compact heat exchangers in electronics thermal management-A review. In: Shah RK, Ishizuka M, Rudy TM, Wadekar VV (eds) Proceedings of fifth international conference on enhanced, compact and ultra-compact heat exchangers: science, engineering and technology. Engineering Conferences International, Hoboken, NJ, USA

  14. Mala GM, Li D, Werner C, Jacobasch H-J, Ning YB (1997) Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int J Heat Fluid Flow 18:489–496

    Article  Google Scholar 

  15. Arulanandam S, Li D (2000) Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids Surf A Physicochem Eng Aspects 161:89–102

    Article  Google Scholar 

  16. Jiang L, Mikkelsen J, Koo J-M, Huber D, Yao S, Zhang L, Zhou P, Maveety JG, Prasher R, Santiago JG, Kenny TW, Goodson KE (2000) Closed-Loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Compon Pack Technol 25(3):347–355

    Article  Google Scholar 

  17. Morini GL, Lorenzini M, Salvigni S, Spiga M (2006) Thermal performance of silicon micro heat-sinks with electrokinetically-driven flows. Int J Therm Sci 45:955–961

    Article  Google Scholar 

  18. Husain A, Kim K-Y (2009) Electroosmotically enhanced microchannel heat sinks. J Mech Sci Technol 23(3):814–822

    Article  Google Scholar 

  19. Husain A, Kim K-Y (2009) Analysis and optimization of electrokinetic microchannel heat sink. Int J Heat Mass Transf 52(21–22):5271–5275

    Article  Google Scholar 

  20. Sawyers DR, Sen M, Chang H-C (1998) Heat transfer enhancement in three-dimensional corrugated channel flow. Int J Heat Mass Transf 45:3559–3573

    Article  Google Scholar 

  21. Fabbri G (2000) Heat transfer optimization in corrugated wall channels. Int J Heat Mass Transf 43:4299–4310

    Article  MATH  Google Scholar 

  22. Wang C-C, Chen C-K. Forced convection in a wavy-wall channel. Int J Heat Mass Transf 45:2587–2595

  23. Metwally HM, Manglik RM. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int J Heat Mass Transf 47:2283–2292

  24. Bahaidarah HMS, Anand NK, Chen HC (2005) Numerical study of heat and momentum transfer in channels with wavy walls. Num Heat Transf Part A 47:417–439

    Article  Google Scholar 

  25. Chen C-K, Cho C-C (2007) Electrokinetically-driven flow mixing in microchannels with wavy surface. J Colloid Interf Sci 312:470–480

    Article  Google Scholar 

  26. Naphon P (2009) Effect of wavy plate geometry configurations on the temperature and flow distributions. Int Commun Heat Mass Transf 36(9):942–946

    Article  Google Scholar 

  27. Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows. Springer, New York

    MATH  Google Scholar 

  28. Kandlikar S, Garimella S, Li D, Colin S, King MR (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier Ltd, Oxford

    Google Scholar 

  29. Xuan X, Sinton D, Li D (2004) Thermal end effects on electroosmotic flow in a capillary. Int J Heat Mass Transf 47:3145–3157

    Article  MATH  Google Scholar 

  30. CFX-11.0 (2006) Solver Theory, ANSYS Europe Ltd

  31. Raw MJ (1996) Robustness of coupled algebraic multigrid for the Navier-Stokes equations, 34th aerospace and sciences meeting & exhibit. January 15–18, AIAA 96-0297 Reno NV

  32. Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF), grant No. 20090083510, funded by the Korean government (MEST) through Multi-phenomena CFD Engineering Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husain, A., Kim, KY. Thermal transport and performance analysis of pressure- and electroosmotically-driven liquid flow microchannel heat sink with wavy wall. Heat Mass Transfer 47, 93–105 (2011). https://doi.org/10.1007/s00231-010-0675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0675-6

Keywords

Navigation