Advertisement

Heat and Mass Transfer

, Volume 46, Issue 4, pp 447–455 | Cite as

Local nonsimilarity method for the two-phase boundary layer in mixed convection laminar film condensation

  • Y. LiaoEmail author
  • S. Guentay
  • K. Vierow
Original
  • 167 Downloads

Abstract

The two-phase boundary layer in laminar film condensation was solved by Koh for the free convection regime and forced convection regime using the similarity method. But the problem on mixed convection does not admit similarity solutions. The current work develops a local nonsimilarity method for the full spectrum of mixed convection, with a generic boundary layer formulation reduced to two specific cases mathematically identical to Koh’s formulations on the two limiting cases for either free or forced convection. Other solution methods for mixed convection in the literature are compared and critically evaluated to ensure a high level of accuracy in the current method. The current solution is used to extend Fujii’s correlation for mixed convection to the region where the energy convection effect is significant but has been hitherto neglected. The modified Fujii correlation provides a practical engineering tool for evaluating laminar film condensation with a mixed convection boundary layer.

Keywords

Free Convection Mixed Convection Convection Regime Condensation Heat Transfer Mixed Convection Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

cL

[g(ρ L  − ρ v )/(4ν L 2 ρ L )]1/4 (m−3/4)

cp

Specific heat (J kg−1K−1)

cv

\( \left[ {g/\left( {4\nu_{v}^{2} } \right)} \right]^{1/4} \) (m−3/4)

f

Vapor dimensionless stream function

F

Liquid dimensionless stream function

g

Gravity constant (m s−2)

h

q w T (W m−2 K−1)

hfg

Latent heat (J kg−1)

H

Condensation number, Eq. 19

k

Thermal conductivity (W m−1 K−1)

Nux

hx/k L

Pr

Prandtl number

q

Local heat flux (W m−2)

Rex

ux/ν L

T

Temperature (K)

ΔT

T T w (K)

u

Longitudinal velocity (m s−1)

u

Vapor bulk velocity (m s−1)

υ

Transverse velocity (m s−1)

x

Longitudinal coordinate (m)

y

Transverse coordinate (m)

z

gx/u 2

Greek symbols

α

Correction factor, Eq. 26

δ

Liquid film thickness (m)

η

Pseudo-similarity variable

μ

Absolute viscosity (kg s−1 m−1)

ν

Kinematic viscosity (m2 s−1)

θ

(T − T )/(T w  − T )

ρ

Density (kg m−3)

ω

[ρ L μ L /(ρ v μ v )]1/2

ξ

Mixed convection parameter, Eq. 1

ψ

Stream function

Subscripts

0

Wall

i

Two-phase interface

L

Liquid phase

v

Vapor phase

w

Wall

Vapor bulk

References

  1. 1.
    Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. Z Vereines Deutsch Ing 60:541–546, 569–575Google Scholar
  2. 2.
    Fujii T (1991) Theory of laminar film condensation. Springer-Verlag, New YorkzbMATHGoogle Scholar
  3. 3.
    Rose JW (1999) Condensation heat transfer. Heat Mass Transfer 35:479–485CrossRefGoogle Scholar
  4. 4.
    Fujii T, Uehara H (1972) Laminar filmwise condensation on a vertical surface. Int J Heat Mass Transf 15:217–233CrossRefGoogle Scholar
  5. 5.
    Rohsenow WM (1956) Heat transfer and temperature distribution in laminar-film condensation. Trans ASME 78:1645–1648Google Scholar
  6. 6.
    Chen MM (1961) An analytical study of laminar film condensation. Part 1: flat plates and part 2 multiple horizontal tubes. ASME J Heat Transf 83:48–60Google Scholar
  7. 7.
    Sadasivan P, Lienhard JH (1987) Sensible heat correction in laminar film boiling and condensation. ASME J Heat Transf 109:545–547CrossRefGoogle Scholar
  8. 8.
    Sparrow EM, Gregg JL (1956) A boundary-layer treatment of laminar-film condensation. ASME J Heat Transf 81:13–18Google Scholar
  9. 9.
    Koh JCY, Sparrow EM, Hartnett JP (1961) The two phase boundary layer in laminar film condensation. Int J Heat Mass Transf 2:69–82CrossRefGoogle Scholar
  10. 10.
    Koh JCY (1962) Film condensation in a forced-convection boundary-layer flow. Int J Heat Mass Transf 5:941–954CrossRefGoogle Scholar
  11. 11.
    Denny VE, Mills AF (1969) Nonsimilar solutions for laminar film condensation on a vertical surface. Int J Heat Mass Transf 12:965–979CrossRefGoogle Scholar
  12. 12.
    Shu J, Wilks G (1995) Mixed-convection laminar film condensation on a semi-infinite vertical plate. J Fluid Mech 300:207–229zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Winkler CM, Chen TS (2000) Mixed convection in film condensation from isothermal vertical surfaces—the entire regime. Int J Heat Mass Transf 43:3245–3251zbMATHCrossRefGoogle Scholar
  14. 14.
    Sparrow EM, Yu HS (1971) Local nonsimilarity thermal boundary layer solutions. ASME J Heat Transf 93:328–334Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratory for Thermal-HydraulicsPaul Scherrer Institute (PSI)VilligenSwitzerland
  2. 2.Department of Nuclear EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations