Advertisement

Heat and Mass Transfer

, 46:75 | Cite as

One dimensional numerical simulation for steady annular condensation flow in rectangular microchannels

  • Yongping ChenEmail author
  • Xin Li
  • Jiafeng Wu
  • Mingheng Shi
Original

Abstract

A one dimensional model for steady annular condensation flow in rectangular microchannels is developed and numerically solved under constant heat flux condition. The results indicate that the annular condensation length is determined by the contact angle, heat flux, vapor pressure, hydraulic diameter and aspect ratio of rectangular microchannels. A larger inlet vapor pressure and hydraulic diameter or a smaller heat flux and contact angle can all result in a longer annular condensation length. In addition, the simulation results of steady annular condensation flow in rectangular microchannels are compared with that in triangular microchannels. The differences in curvature radius, condensate pressure and velocity, vapor velocity distributions in rectangular and triangular microchannels under the same conditions verify the considerable influence of cross-section shape on micro flow condensation.

Keywords

Contact Angle Hydraulic Diameter Annular Flow Condensation Heat Transfer Rectangular Microchannels 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

A

Area (m2)

a

Width of rectangular microchannels (m)

b

Depth of rectangular microchannels (m)

c

=1/4, see Eq. 14

D

Hydraulic diameter (m)

f

Friction factor

hfg

Latent heat (J kg−1)

L

Annular condensation length (m)

l

Length of the end part in condensation (m)

m

Mass flux (kg s−1)

p

Pressure (Pa)

q

Heat flux (W m−2)

R

Curvature radius (m)

S

Perimeter (m)

u

Velocity (m s−1)

(fRe)

Poiseuille number

Greek symbols

β

Half of right angle (°)

ε

=min(a,b) see Eq. 22 (m)

η

Viscosity (kg m−1 s−1)

θ

Contact angle (°)

ρ

Density (kg m−3)

σ

Surface tension coefficient (N m−1)

τ

Shear stress (N m−2)

Subscripts

l

Liquid

lw

Liquid–wall interface

v

Vapor

vl

Liquid–vapor interface

0

Inlet

Notes

Acknowledgments

The authors gratefully acknowledge the support provided by National Natural Science Foundation of China (No. 50806012).

References

  1. 1.
    Chen YP, Shi MH, Cheng P, Peterson GP (2008) Condensation in microchannels. Nanoscale Microscale Thermophys Eng 12(2):117–143CrossRefGoogle Scholar
  2. 2.
    Chen YP, Sobhan CB, Peterson GP (2006) Review of condensation heat transfer in microgravity environments. J Thermophys Heat Transf 20(3):353–360CrossRefGoogle Scholar
  3. 3.
    Cormac E, Tara D, Mark D, Cian O, Orla S (2005) Direct comparison between five different microchannels, part 1: channel manufacture and measurement. Heat Transf Eng 26(3):79–88CrossRefGoogle Scholar
  4. 4.
    Corimnne P, Jumana B, Christian S, Martin C (2000) Analytic modeling, optimization, and realization of cooling devices in silicon technology. IEEE Trans Compon Packag Technol 23(4):665–672CrossRefGoogle Scholar
  5. 5.
    Ichikawa K, Hosokawa K, Maeda R (2004) Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface 280(1):155–164CrossRefGoogle Scholar
  6. 6.
    Garimella S (2003) Condensation flow mechanisms in microchannels basis for pressure drop and heat transfer models. In: Proceedings of the 1st international conference on microchannels and minichannels (New York), pp 181–192Google Scholar
  7. 7.
    Garimella S, Bandhauer TM (2001) Measurement of condensation heat transfer coefficients in microchannel tubes. In: Proceedings of the heat transfer division fluid-physics and heat transfer for macro-and micro-scale gas–liquid and phase-change flows (New York), vol 3, pp 243–249Google Scholar
  8. 8.
    Son CH, Lee HS (2009) Condensation heat transfer characteristics of R-22, R-134a and R-410A in small diameter tubes. Heat Mass Transf 45(9):1153–1166CrossRefGoogle Scholar
  9. 9.
    Médéric B, Miscevic M, Platel V, Lavieille P, Joly JL (2004) Experimental study of flow characteristics during condensation in narrow channels: the influence of the diameter channel on structure patterns. Superlattices Microstruct 35(3–6):573–586CrossRefGoogle Scholar
  10. 10.
    Chen YP, Cheng P (2005) Condensation of steam in silicon microchannels. Int Commun Heat Mass Transf 32(1–2):175–183CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen YP, Li J, Peterson GP (2006) Influence of hydraulic diameter on flow condensation in silicon microchannels. In: Proceedings of 13th international heat transfer conference (Sydney, Australia)Google Scholar
  12. 12.
    Quan XJ, Cheng P, Wu HY (2008) Transition from annular flow to plug/slug flow in condensation of steam in microchannels. Int J Heat Mass Transf 51(3–4):707–716CrossRefGoogle Scholar
  13. 13.
    Zhang W, Xu JL (2008) Flow pattern and multichannel effect of steam condensation in silicon microchannels. J Eng Thermophys 29(4):605–608Google Scholar
  14. 14.
    Zhang W, Xu JL, Thome JR (2008) Periodic bubble emission and appearance of an ordered bubble sequence (train) during condensation in a single microchannel. Int J Heat Mass Transf 51(13–14):3420–3433CrossRefGoogle Scholar
  15. 15.
    Chen YP, Wu R, Shi MH, Wu JF, Peterson GP (2009) Visualization study of steam condensation in triangular microchannels. Int J Heat Mass Transf 52(21–22):5122–5129CrossRefGoogle Scholar
  16. 16.
    Wu JF, Shi MH, Chen YP, Li X (2009) Visualization study of steam condensation in wide rectangular silicon microchannels. Int J Therm Sci (Submitted)Google Scholar
  17. 17.
    Dong T, Yang ZC (2008) Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels. J Micromech Microeng 18(8):085012CrossRefGoogle Scholar
  18. 18.
    Kuo CY, Pan C (2009) The effect of cross-section design of rectangular microchannels on convective steam condensation. J Micromech Microeng 19(3):035017CrossRefGoogle Scholar
  19. 19.
    Zhao TS, Liao Q (2002) Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels. Int J Heat Mass Transf 45(13):2829–2842zbMATHCrossRefGoogle Scholar
  20. 20.
    Wang HS, Rose JW, Honda H (2004) A theoretical model of film condensation in square section horizontal microchannels. Chem Eng Res Des 82(4):430–434CrossRefGoogle Scholar
  21. 21.
    Wang HS, Rose JW (2005) A theory of film condensation in horizontal noncircular section microchannels. ASME J Heat Transf 127(10):1096–1105CrossRefGoogle Scholar
  22. 22.
    Wang HS, Rose JW (2006) Film condensation in horizontal microchannels: effect of channel shape. Int J Therm Sci 45(12):1205–1212CrossRefGoogle Scholar
  23. 23.
    Chen YP, Wu JF, Shi MH, Peterson GP (2008) Numerical simulation for steady annular condensation flow in triangular microchannels. Int Commun Heat Mass Transf 35(7):805–809CrossRefGoogle Scholar
  24. 24.
    Wu JF, Chen YP, Shi MH, Fu PP, Peterson GP (2009) Three dimensional numerical simulation for annular condensation in rectangular microchannel. Nanoscale Microscale Thermophys Eng 13(1):13–29CrossRefGoogle Scholar
  25. 25.
    Peterson GP, Ma HB (1999) Temperature response of heat transport in a micro heat pipe. ASME J Heat Transf 121(2):438–445CrossRefGoogle Scholar
  26. 26.
    Shah RK (1975) Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. Int J Heat Mass Transf 18:849–862zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yongping Chen
    • 1
    Email author
  • Xin Li
    • 1
  • Jiafeng Wu
    • 1
  • Mingheng Shi
    • 1
  1. 1.School of Energy and EnvironmentSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations