Skip to main content
Log in

A review on design criteria for vortex tubes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, the past investigations of the design criteria of vortex tubes were overviewed and the detailed information was presented on the design of them. Vortex tubes were classified and the type of them was described. All criteria on the design of vortex tubes were given in detail using experimental and theoretical results from the past until now. Finally, the criteria on the design of them are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

cross section (m2)

CFD:

computational fluid dynamics

COP:

coefficient of performance

c p :

specific heat at constant pressure (kJ kg−1 K−1)

c v :

specific heat at constant volume (kJ kg−1 K−1)

d :

diameter (m)

D :

diameter (m)

h :

enthalpy (kJ kg−1)

k :

specific heat ratio

k :

Boltzmann constant (J K−1)

L :

length (m)

\( \dot{m} \) :

mass flow rate (kg s−1)

N :

number

p :

pressure (Pa)

\( \dot{Q} \) :

heat transfer rate (W)

R :

specific gas constant (kJ kg−1 K−1)

RHVT:

Ranque–Hilsch vortex tube

S :

entropy (W K−1)

T :

temperature (K)

\( T_{\text{sm}}^{*} \) :

temperature assumed to be \( T_{h}^{1 - \varepsilon } T_{c}^{\varepsilon } \)

\( \dot{W} \) :

power (W)

X :

normalised pressure drop \( \left( {X = {{\left( {p_{{\text{in}}} - p_{c} } \right)} \mathord{\left/ {\vphantom {{\left( {p_{{\text{in}}} - p_{c} } \right)} {p_{{\text{in}}} }}} \right. \kern-\nulldelimiterspace} {p_{{\text{in}}} }}} \right) \)

α:

angle of cone-shaped control valve

α:

ratio of hot end area to tube area

β:

cold orifice diameter ratio \( \left( {\beta = {{d_{\text{c}} } \mathord{\left/ {\vphantom {{d_{\text{c}} } D}} \right. \kern-\nulldelimiterspace} D}} \right) \)

ε:

cold fraction

εo :

Lennard–Jones potential

η:

efficiency

ΔT :

temperature difference

\( {{\Updelta T} \mathord{\left/ {\vphantom {{\Updelta T} {T_{\text{in}} }}} \right. \kern-\nulldelimiterspace} {T_{\text{in}} }} \) :

normalised temperature drop/rise

Γ:

\( {{\left( {k - 1} \right)} \mathord{\left/ {\vphantom {{\left( {k - 1} \right)} k}} \right. \kern-\nulldelimiterspace} k} \)

Θ:

irreversibility parameter

\( \tau_{\text{p}} \) :

pressure ratio \( \left( { = {{p_{\text{in}} } \mathord{\left/ {\vphantom {{p_{\text{in}} } {p_{\text{c}} }}} \right. \kern-\nulldelimiterspace} {p_{\text{c}} }}} \right) \)

atm:

atmosphere

c:

cold

cr:

cooler

cr:

critical

h:

hot

hp:

heat pump

in:

inlet

i:

irreversible

ir:

irreversible

s:

isentropic

References

  1. Gao C (2005) Experimental study on the Ranque–Hilsch vortex tube. PhD Thesis, Technische Universiteit Eindhoven

  2. Eiamsa-ard S, Promvonge P (2007) Review of Ranque–Hilsch effects in vortex tubes. Renew Sustain Energy Rev. doi:10.1016/j.rser.2007.03.006

  3. Ranque GJ (1933) Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. J Phys Radium (Paris) 4:112–114, June. Also translated as General Electric Co., Schenectady Works Library 1947; T.F. 3294

    Google Scholar 

  4. Ranque GJ (1934) Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures. US patent 1:952,281

    Google Scholar 

  5. Hilsch R (1947) The use of expansion of gases in a centrifugal field as a cooling process. Rev Sci Instrum 18(2):108–113

    Article  Google Scholar 

  6. Westley R (1954) A bibliography and survey of the vortex tube. College of Aeronautics, Cranfield note, UK

    Google Scholar 

  7. Curley W, McGree R Jr (1951) Bibliography of vortex tubes. Refrig Eng 59(2):191–193

    Google Scholar 

  8. Kalvinskas L (1956) Vortex tubes (an extension of Wesley’s bibliography). Jet Propulsion Laboratory, California Inst of Technology Literature Search, 56, Part 2

  9. Dobratz BM (1964) Vortex tubes: a bibliography. Lawrence Radiation Laboratory UCRL-7829

  10. Nash JM (1972) The Ranque–Hilsch vortex tube and its application to spacecraft environmental control systems. Dev Theor Appl Mech, p 6

  11. Hellyar KG (1979) Gas liquefaction using a Ranque–Hilsch vortex tube: design criteria and bibliography. Report for the degree of Chemical Engineer, Massachusetts Institute of Technology

  12. Fulton CD (1950) Ranque’s tube. J ASRE Refrig Eng 58:473–479

    Google Scholar 

  13. Fulton CD (1951) Comments on the vortex tube. J ASRE Refrig Eng 59:984

    Google Scholar 

  14. Hartnett JP, Eckert ERG (1957) Experimental study of the velocity and temperature distribution in a high-velocity vortex-type flow. Trans ASME J Heat Transfer 79:751–758

    Google Scholar 

  15. Martynovskii VS, Alekseev VP (1957) Investigation of the vortex thermal separation effect for gases and vapors. Sov Phys-Tech Phys 26(2):2233–2243

    Google Scholar 

  16. Lay JE (1959) An experimental and analytical study of vortex flow temperature separation by superposition of spiral and axial flows: Part I. Trans ASME J Heat Transfer 81(4):202–212

    Google Scholar 

  17. Lay JE (1959) An experimental and analytical study of vortex flow temperature separation by superposition of spiral and axial flows: Part II. Trans ASME J Heat Transfer 81(4):213–222

    Google Scholar 

  18. Deissler RG, Perlmutter M (1958) An analysis of the energy separation in laminar and turbulent compressible vortex flows. Heat Transfer and Fluid Mechanics Institute, Stanford University Press

  19. Deissler RG, Perlmutter M (1960) Analysis of the flow and energy separation in a vortex tube. Int J Heat Mass Transfer 1:173–191

    Article  Google Scholar 

  20. Takahama H (1965) Studies on vortex tubes. Bull Jpn Soc Mech Eng 8(31):433–440

    Google Scholar 

  21. Takahama H, Ikeda T, Kawamura H (1973) Japan Soc Mech Eng 77:733–734

    Google Scholar 

  22. Takahama H, Soga N (1966) Studies on vortex tubes 2nd report, Reynolds no. the effects of the cold air rate and partial admission of nozzle on the energy separation. Bull Jpn Soc Mech Eng 9(33):121–130

    Google Scholar 

  23. Takahama H, Kawamura M, Kato B, Yokosawa H (1979) Performance characteristics of energy separation in a steam operated vortex tube. Int J Eng Sci 17:735–744

    Article  Google Scholar 

  24. Takahama H, Yokosawa H (1981) Energy separation in vortex tubes with a divergent chamber. Trans ASME J Heat Transfer 103:196–203

    Google Scholar 

  25. Takahama H, Kawashima K (1966) An experimental study of vortex tubes. Bull JSME 9(33):227–245

    Google Scholar 

  26. Sibulkin M (1962) Unsteady, viscous, circular flow, Part III. Application to the Ranque–Hilsch vortex tube. J Fluid Mech 12:269–293

    Article  Google Scholar 

  27. Linderstrom-Lang CU (1964) Gas separation in the Ranque–Hilsch vortex tube. Int J Heat Mass Transfer 7:1195–1206

    Article  Google Scholar 

  28. Linderstrom-Lang CU (1966) Gas separation in the Ranque–Hilsch vortex tube model calculations based on flow data. Riso report, Denmark, June

  29. Linderstrom-Lang CU (1971) The three-dimensional distributions of tangential velocity and total-temperature in vortex tubes. J Fluid Mech 45:161–187

    Article  Google Scholar 

  30. Linderstrom-Lang CU (1971) Studies on transport of mass and energy in the vortex tube. The significance of the secondary flow and its interaction with the tangential velocity distribution. Riso report, Denmark, September

  31. Borisenko AI, Safonov VA, Yakovlev AI (1968) The effect of geometric parameters on the characteristics of a conical vortex cooling unit. J Eng Phys Thermophys 15(6):1158–1162

    Google Scholar 

  32. Bruun HH (1969) Experimental investigation of the energy separation in vortex tubes. J Mech Eng Sci 11(6):567–582

    Article  Google Scholar 

  33. Raiskii Yu D, Tunkel LE (1974) Influence of vortex-tube saturation and length on the process of energetic gas separation. J Eng Phys 27(6):1578–1581

    Article  Google Scholar 

  34. Soni Y (1973) A parametric study of the Ranque–Hilsch tube. PhD Thesis, University of Idaho

  35. Soni Y, Thompson WJ (1975) Optimal design of the Ranque–Hilsch vortex tube. Trans ASME J Heat Transfer 94(2):316–317

    Google Scholar 

  36. Marshall J (1977) Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of the Linderstrom–Lang vortex tube. Int J Heat Mass Transfer 20:227–231

    Article  Google Scholar 

  37. Kurosaka M (1982) Acoustic streaming in swirling flow and the Ranque–Hilsch (vortex tube) effect. J Fluid Mech 124:139–172

    Article  Google Scholar 

  38. Stephan K, Lin S, Durst M, Huang F, Seher D (1983) An investigation of energy separation in a vortex tube. Int J Heat Mass Transfer 26:341–348

    Article  Google Scholar 

  39. Stephan K, Lin S, Durst M, Huang F, Seher D (1984) A similarity relation for energy separation in a vortex tube. Int J Heat Mass Transfer 27:911–920

    Article  Google Scholar 

  40. Balmer RT (1988) Pressure driven Ranque Hilsch temperature separation in liquids. J Fluids Eng 110:161–164

    Article  Google Scholar 

  41. Nabhani N (1989) Hot-wire anemometry study of confined turbulent swirling flow. PhD Thesis, Bradford University, Bradford

  42. Ahlborn B, Keller JU, Staudt R, Treitz G, Rebhan E (1994) Limits of temperature separation in a vortex tube. J Phys D Appl Phys 27:480–488

    Article  Google Scholar 

  43. Ahlborn B, Camire J, Keller JU (1996) Low-pressure vortex tubes. J Phys D Appl Phys 29:1469–1472

    Article  Google Scholar 

  44. Ahlborn B, Groves S (1997) Secondary flow in a vortex tube. Fluid Dyn Res 21(2):73–86

    Article  Google Scholar 

  45. Ahlborn B, Keller JU, Rebhan E (1998) The heat pump in a vortex tube. J Non-Equilib Thermodyn 23(2):159–165

    MATH  Google Scholar 

  46. Ahlborn B, Gordon JM (2000) The vortex tube as a classic thermodynamic refrigeration cycle. J Appl Phys 88(6):3645–3653

    Article  Google Scholar 

  47. Gutsol AF (1997) The Ranque effect. Phys Uspekhi 40(6):639–658

    Article  Google Scholar 

  48. Gutsol AF, Bakken JA (1998) A new vortex method of plasma insulation and explanation of the Ranque effect. J Phys D Appl Phys 31:704–711

    Article  Google Scholar 

  49. Lewins J, Bejan A (1999) Vortex tube optimization theory. Energy J 24:931–943

    Article  Google Scholar 

  50. Saidi MH, Yazdi MR (1999) Exergy model of a vortex tube system with experimental results. Energy 24:625–632

    Article  Google Scholar 

  51. Cockerill TT (1998) Thermodynamics and fluid mechanics of a Ranque–Hilsch vortex tube. PhD Thesis, University of Cambridge

  52. Khodorkov L, Poshernev NV, Zhidkov MA (2003) The vortex tube-a universal device for heating, cooling, cleaning, and drying gases and separating gas mixtures. Chem Pet Eng 39(7–8):409–415

    Article  Google Scholar 

  53. Poshernev NV, Khodorkov IL (2003) Experience from the operation of a conical vortex tube with natural gas. Chem Pet Eng 39(9–10):602–607

    Article  Google Scholar 

  54. Poshernev NV, Khodorkov IL (2004) Natural-gas tests on a conical vortex tube (CVT) with external cooling. Chem Pet Eng 40(3–4):212–217

    Article  Google Scholar 

  55. Shannak BA (2004) Temperature separation and friction losses in vortex tube. Heat Mass Transfer 40:779–785

    Article  Google Scholar 

  56. Singh PK, Tathgir RG, Gangacharyulu D, Grewal GS (2004) An experimental performance evaluation of vortex tube. IE(I) J-MC 84:149–153

    Google Scholar 

  57. Behera U, Paul PJ, Kasthurirengan S, Karunanithi R, Ram SN, Dinesh K et al (2005) CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube. Int J Heat Mass Transfer 48(10):1961–1973

    Article  Google Scholar 

  58. Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of the vortex tube using a CFD model. Int J Refrig 28(3):442–450

    Article  Google Scholar 

  59. Skye HM, Nellis GF, Klein SA (2006) Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig 29:71–80

    Article  Google Scholar 

  60. Promvonge P, Eiamsa-ard S (2004) Experimental investigation of temperature separation in a vortex tube refrigerator with snail entrance. ASEAN J Sci Technol Dev 21(4):297–308

    Google Scholar 

  61. Promvonge P, Eiamsa-ard S (2005) Investigation on the vortex thermal separation in a vortex tube refrigerator. Sci Asia J 31(3):215–223

    Article  Google Scholar 

  62. Eiamsa-ard S, Promvonge P (2006) Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube. J Zhejiang Univ SCI Int Appl Phys Eng J 7(8):1406–1415

    Article  MATH  Google Scholar 

  63. Eiamsa-ard S, Promvonge P (2007) Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. Int J Heat Mass Transfer 50(5–6):821–832

    Article  MATH  Google Scholar 

  64. Azarov AI (1993) Industrial application of the range of vortex coolers. In: Proceedings of all-union conference “Application of the Vortex Effect in Engineering”. SGAI, Samara, pp 75–79

  65. Azarov AI (2004) Ways of improving commercial vortex tubes. Chem Pet Eng 40(7–8):411–416

    Article  Google Scholar 

  66. Azarov AI. Modular multi-chambers vortex tubes. Available at [http://www.ecoteco.ru].

  67. Azarov AI (2000) Multipurpose vortex air coolers: examination of the scales of industrial use. Vestn. MGTY 2000;Special Issue:93–9

  68. Azarov AI (2002) Reducing the specific energy consumption for obtaining cold in vortex tubes. Mezhvuz. Sb. Nauch. Tr. Probl. Ékon. Topli.-Énerg. Resurs. Prompredpr. TÉS, pp 112–117

  69. Yilmaz M, Comakli O, Kaya M, Karsli S (2006) Vortex tubes: 1 Technological development (in Turkish). Eng Mach 47(553):46–54

    Google Scholar 

  70. Yilmaz M, Comakli O, Kaya M, Karsli S (2006) Vortex tubes: 2 Energy separation mechanism and performance characteristics (in Turkish). Eng Mach 47(554):42–51

    Google Scholar 

  71. Piralishvili SA, Fuzeeva AA (2006) Similarity of the energy-separation process in vortex Ranque tubes. J Eng Phys Thermophys 79(1):27–32

    Article  Google Scholar 

  72. Silverman MP (1982) The vortex tube: a violation of the second law. Eur J Phys 3:88–92

    Article  Google Scholar 

  73. Cengel YA, Boles MA (1998) Thermodynamics: an engineering approach, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  74. Piralishvili SA, Polyaev VM (1996) Flow and thermodynamic characteristics of energy separation in a doublecircuit vortex tube-an experimental investigation. Int J Exp Therm Fluid Sci 12(4):399–410

    Article  Google Scholar 

  75. Singh K. Ranque–Hilsch vortex tube. Available at [http://sps.nus.edu.sg]

  76. Westley R (1957) Vortex tube performance data sheets. Cranfield College Note 67, College of Aeronautics

  77. Gulyaev AI (1965) Ranque effect at low temperatures. J Eng Phys 9(3):242–244

    Article  MathSciNet  Google Scholar 

  78. Gulyaev AI (1966) Investigation of conical vortex tubes. J Eng Phys 10(3):193–195

    Article  MathSciNet  Google Scholar 

  79. Lewellen WS (1971) A review of confined vortex flows. Space Propulsion Lab., Massachusetts Institute of Technology. Contract Report NASA-CR-1772; N71-32276

  80. Amitani T, Adachi T, Kato T (1983) A study on temperature separation in a large vortex tube. Trans JSME 49:877–884

    Google Scholar 

  81. Saidi MH, Valipour MS (2003) Experimental modeling of vortex tube refrigerator. Appl Therm Eng 23:1971–1980

    Article  Google Scholar 

  82. Dincer K, Baskaya S, Uysal BZ (2007) Experimental investigation of the effects of length to diameter ratio and nozzle number on the performance of counter flow Ranque–Hilsch vortex tubes. Heat Mass Transfer. doi:10.1007/s00231-007-0241-z

  83. Aydın O, Baki M (2006) An experimental study on the design parameters of a counter flow vortex tube. Energy J 31(14):2763–2772

    Article  Google Scholar 

  84. Universal Vortex, Inc. Pilot gas heater. Available at [http://www.universal-vortex.com/]

  85. Arizona Vortex Tube—Manufacturing Company. Vortex tubes. Available at [http://www.arizonavortex.com/vortex-tube/]

  86. Newman Tools Inc. Vortex tubes. Available at [http://www.newmantools.com/vortex.htm]

  87. Exair Corporation. Vortex tubes and spot cooling products. Available at [http://www.exair.com]

  88. AiRTX The Air Research Technology Company. Vortex tubes. Available at [http://www.airtxinternational.com/index.php]

  89. Vortec. Vortex tubes. Available at [http://www.vortec.com/]

  90. Meech Static Eliminators Ltd. Vortex coolers. Available at [http://www.meech.com/ProductGroup.aspx?id=62]

  91. XoAir. Vortex tube. Available at [http://www.x-air.fr/]

  92. C. C. Steven & Associates. Vortex tubes. Available at [http://www.vortexair.biz/]

  93. Nex Flow™ Air Products Corp. Industrial Cooling Systems. Vortex tubes. Available at [http://www.nex-flow.com/vortex_tube.htm]

  94. Westley R (1955) Optimum design of a vortex tube for achieving larger temperature drop ratios. Cranfield College Note 30, College of Aeronautics

  95. Reynolds AJ (1961) Energy flows in a vortex tube. J Appl Math Phys 12:343

    Article  MATH  MathSciNet  Google Scholar 

  96. Reynolds AJ (1961) Studies of rotating fluids: I. Plane axisymmetric flow. II. The Ranque–Hilsch vortex tube. PhD Thesis, University of London

  97. Reynolds AJ (1962) A note on vortex-tube flows. J Fluid Mech 14:18

    Article  Google Scholar 

  98. Metenin VI (1961) Investigation of vortex temperature type compressed gas separators. Sov Phys Tech Phys 5(9):1025–1032

    Google Scholar 

  99. Metenin VI (1964) An investigation of counter-flow vortex tubes. Int Chem Eng 4(3):461–466

    Google Scholar 

  100. Parulekar BB (1961) The short vortex tube. J Refrig 4:74–80

    Google Scholar 

  101. Leites IL, Semenov VP, Polovinkin VA, Mure BI, Tagintsev BG, Narizhnyi VP, Kozlova MS, Poletaev AS, Murzin MI (1971) The purification of natural gas by means of the vortex effect. Int Chem Eng 11(2):195–201

    Google Scholar 

  102. Wu YT, Ding Y, Ji YB, Ma CF, Ge MC (2007) Modification and experimental research on vortex tube. Int J Refrigeration (in press)

  103. Merkulov AP (1969) Technical applications of the vortex effect (in Russian). Mashinostroenie, Moscow

  104. Blatt TA, Trusch RB (1962) An experimental investigation of an improved vortex cooling device. American Society of Mechanical Engineers, Winter Annual Meeting, America

    Google Scholar 

  105. Schlenz D (1982) Kompressible strahlgetriebene drallstromung in rotationssymmetrischen Kanalen. PhD Thesis, Technische Fakultat Universitat, Erlangen-Nurnberg

  106. Otten EH (1958) Production of cold air—simplicity of the vortex tube method. Engineering(London) 186(4821):154–156

    Google Scholar 

  107. Chu JG (1982) Acoustic streaming as a mechanism of the Ranque–Hilsch effect. PhD Thesis, University of Tennessee, Knoxville

  108. Kuroda H (1983) An experimental study of temperature separation in swirling flow. PhD Thesis, University of Tennessee, Knoxville

  109. Özgür AE (2001) Determination of parameters influencing the operating criteria of vortex tubes and industrial applications (in Turkish). MSc Thesis, Süleyman Demirel Üniversitesi, Isparta

  110. Ma TQ, Zhao QG, Yu J, Ye F, Ma CF (2002) Experimental investigation on energy separation by vortex tubes. In: Twelfth international heat transfer conference, Grenoble, France, 18–23 August, vol 4, pp 537–542

  111. Dincer K, Başkaya Ş, Kirmaci V, Usta H, Uysal BZ (2006) Investigation of performance of a vortex tube with air, oxygen, carbon dioxide and nitrogen as working fluids (in Turkish). Eng Mach 47(560):36–40

    Google Scholar 

  112. Williams A (1971) The cooling of methane with vortex tubes. J Mech Eng Sci 13(6):369–375

    Article  Google Scholar 

  113. Collins RL, Lovelace RB (1979) Experimental study of two-phase propane expanded through the Ranque–Hilsch tube. Trans ASME J Heat Transfer 101:300–305

    Google Scholar 

  114. Starostin PI, Itkin MS (1968) Operation of a vortex tube on high pressure superheated steam. Teploenergetika 15(8):31–35

    Google Scholar 

  115. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2007) Vortex tube design: I (in Turkish). Machinery 116:100–106

    Google Scholar 

  116. Yilmaz M, Kaya M, Karagoz S, Erdogan S (2007) Vortex tube design: II (in Turkish). Machinery 117:102–107

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that this study was supported with a grant from The Scientific and Technological Research Council of Turkey, TÜBİTAK (Project No: 105M028, Project Title: Use of Vortex Tubes in Refrigeration Technique), and Atatürk University Scientific Research Foundation (Project No: BAP 2005/20, Project Title: Use of Vortex Tubes in Refrigeration Technique).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, M., Kaya, M., Karagoz, S. et al. A review on design criteria for vortex tubes. Heat Mass Transfer 45, 613–632 (2009). https://doi.org/10.1007/s00231-008-0447-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0447-8

Keywords

Navigation