Skip to main content
Log in

Calculation procedure to determine average mass transfer coefficients in packed columns from experimental data for ammonia–water absorption refrigeration systems

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The ammonia purification process is critical in ammonia–water absorption refrigeration systems. In this paper, a detailed and a simplified analytical model are presented to characterize the performance of the ammonia rectification process in packed columns. The detailed model is based on mass and energy balances and simultaneous heat and mass transfer equations. The simplified model is derived and compared with the detailed model. The range of applicability of the simplified model is determined. A calculation procedure based on the simplified model is developed to determine the volumetric mass transfer coefficients in the vapour phase from experimental data. Finally, the proposed model and other simple calculation methods found in the general literature are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a ef :

effective transfer area (m2 m−3)

\({\tilde{c}}_{p}\) :

partial molar specific heat (J kmol−1 K−1)

d c :

column diameter (m)

F :

mass transfer coefficient (kmol m−2 s−1)

h :

specific molar enthalpy (J kmol−1)

\({\tilde{h}}\) :

partial molar enthalpy (J kmol−1)

H :

column length (m)

H v :

height of a transfer unit for the vapour (m)

\({\dot{L}}\) :

liquid superficial molar flow (kmol m−2 s−1)

\({\dot{m}}\) :

mass flow (kg s−1)

\({\dot{n}}\) :

molar flux (kmol m−2 s−1)

N v :

number of transfer units for the vapour phase

\({\dot{N}}\) :

molar flow (kmol s−1)

p :

pressure, bar

r :

reflux ratio

T :

temperature (K)

x :

ammonia molar concentration (kmol kmol−1)

\({\dot{V}}\) :

vapour superficial molar flow (kmol m−2 s−1)

z :

ratio of ammonia to total molar flux

\({\bar{z}}\) :

average value of z along the column

α :

heat transfer coefficient (W m−2 K−1)

β :

finite mass transfer factor

\({\dot{\varphi}}\) :

heat flux (W m−2)

Φ h :

heat transfer correction factor

1:

bottom section of the column

2:

top section of the column

i :

liquid–vapour interface

l :

liquid

o :

overall

v :

vapour

*:

vapour in equilibrium with liquid

•:

corrected for finite mass transfer rate

References

  1. Ziegler F (1999) Recent developments and future prospects of sorption heat pump systems. Int J Therm Sci 38:191–208

    Article  Google Scholar 

  2. Bogart MJP (1982) Pitfalls in ammonia absorption refrigeration. Int J Refrig 5:203–208

    Article  Google Scholar 

  3. Fernández-Seara J, Sieres J (2006) Ammonia–water absorption refrigeration systems with flooded evaporators. Appl Therm Eng 26:2236–2246

    Article  Google Scholar 

  4. Fernández-Seara J, Sieres J (2006) The importance of the ammonia purification process in ammonia–water absorption systems. Energy Conv Manag 47:1975–1987

    Article  Google Scholar 

  5. Fernández-Seara J, Sieres J, Vázquez M (2003) Distillation column configurations in ammonia–water absorption refrigeration systems. Int J Refrig 26:28–34

    Article  Google Scholar 

  6. Wang GQ, Yuan XG, Yu KT (2005) Review of mass-transfer correlations for packed columns. Ind Eng Chem Res 44:8715–8729

    Article  Google Scholar 

  7. Taylor R (2007) (Di)Still modeling after all these years: a view of the state of the art. Ind Eng Chem Res 46:4349–4357

    Article  Google Scholar 

  8. Fernández-Seara J, Sieres J, Vázquez M (2002) Simultaneous heat and mass transfer of a packed distillation column for ammonia–water absorption refrigeration systems. Int J Therm Sci 41:927–935

    Article  Google Scholar 

  9. Kang YT, Chen W, Christensen RN (1996) Development of design model for a rectifier in GAX absorption heat pump systems. ASHRAE Trans 102(pt. 1):963–972

    Google Scholar 

  10. Berlitz T, Plank H, Ziegler F, Kahn R (1998) An ammonia–water absorption refrigerator with a large temperature lift for combined heating and cooling. Int J Refrig 21:219–229

    Article  Google Scholar 

  11. Anand G, Erickson DC (1999) Compact Sieve-tray distillation column for ammonia–water absorption heat pump: Part I—design methodology. ASHRAE Trans 105(pt. 1):796–803

    Google Scholar 

  12. Fernández-Seara J, Sieres J, Vázquez M (2003) Heat and mass transfer analysis of a helical coil rectifier in an ammonia–water absorption system. Int J Therm Sci 42:783–794

    Article  Google Scholar 

  13. Sieres J, Fernández-Seara J (2007) Modeling of simultaneous heat and mass transfer processes in ammonia–water absorption refrigeration systems from general correlations. Heat Mass Transf 44:113–123

    Article  Google Scholar 

  14. Selim AM, Elsayed MM (1999) Performance of a packed bed absorber for aqua ammonia absorption refrigeration system. Int J Refrig 22:283–292

    Article  Google Scholar 

  15. Sieres J, Fernández Seara J (2007) Experimental investigation of mass transfer performance with some random packings for ammonia rectification in ammonia–water absorption refrigeration systems. Int J Therm Sci 46:699–706

    Article  Google Scholar 

  16. Sieres J, Fernández Seara J (2007) Mass transfer characteristics of a structured packing for ammonia rectification in ammonia–water absorption refrigeration systems. Int J Refrig 30:58–67

    Article  Google Scholar 

  17. Sieres Atienza J (2005) Estudio teórico y experimental de los procesos de transmisión de calor y transferencia de masa en columnas de destilación empacadas para sistemas de refrigeración por absorción con amoniaco-agua. Ph.D thesis, University of Vigo, Spain

  18. Treybal RE (1980) Mass transfer operations. McGraw-Hill, New York

    Google Scholar 

  19. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New York

    Google Scholar 

  20. Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16:1215–1220

    Article  Google Scholar 

  21. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  22. Taylor R, Krishna R (1993) Multicomponent mass transfer. Wiley, New York

    Google Scholar 

  23. Wiegand JH (1940) The simplified calculations on diffusional processes. Trans AIChE 36:679–681

    Google Scholar 

  24. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1:56–62

    Article  Google Scholar 

  25. Chilton TH, Colburn AP (1934) Mass transfer (absorption) coefficients. Prediction from data on heat transfer and fluid friction. Ind Eng Chem 26:1183–1187

    Article  Google Scholar 

  26. Ziegler B, Trepp Ch (1984) Equation of state of ammonia–water mixtures. Int J Refrig 7:101–106

    Article  Google Scholar 

  27. Sieres J, Fernández-Seara J, Uhía FJ, Vázquez M (2005) Preliminary experimental results of ammonia–water rectification in packed columns at total reflux. In: Meyer JP, Malan G (eds) Proceedings of the 4th international conference on heat transfer, fluid mechanics and thermodynamics, HEFAT 2005, Cairo, Egypt, 2005. Paper number: SJ5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fernández-Seara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieres, J., Fernández-Seara, J. Calculation procedure to determine average mass transfer coefficients in packed columns from experimental data for ammonia–water absorption refrigeration systems. Heat Mass Transfer 44, 1229–1239 (2008). https://doi.org/10.1007/s00231-007-0358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0358-0

Keywords

Navigation