Skip to main content

Advertisement

Log in

On hyperbolic heat conduction in solids: minimum mean free path of energy carriers and a method of estimating thermal diffusivity and heat propagation characteristics

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper gives the analytical solution to the one dimensional hyperbolic heat conduction equation in an insulated slab-shaped sample that is heated uniformly on the front face with δ or laser impulse. The solution results in a formula that enables to estimate the minimum mean free path of energy carriers in the sample to detect the second sound (i.e. the thermal wave) at the sample rear face. A method of experimental data evaluation at the second sound effect is proposed, which gives the thermal diffusivity of the sample and the parameters of heat propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity

b :

dimensionless parameter

c :

specific heat capacity

c v :

specific heat capacity per volume unit

I0 (x), I1 (x):

modified Bessel functions of the first kind

L :

sample thickness

L c :

sample critical thickness

ℓ:

mean free path

min :

minimum mean free path

Q :

total delivered energy per square meter

Q w :

total energy of the wave per square meter

\({\bar{Q}}_{w}\) :

total relative energy of the wave per square meter

q :

density of energy flow rate

T :

temperature

\({\bar{T}}\) :

relative temperature

T :

resultant temperature

t :

time

t*:

wave transit time

\({\bar{t}}\) :

dimensionless time

t T :

duration of the impulse

\({\bar{t}}_{T}\) :

relative duration of the impulse

t c :

characteristic time of the impulse

\({\bar{t}}_{c}\) :

relative characteristic time of the impulse

v :

mean velocity of heat carriers in substance

x :

coordinate

\({\bar{x}}\) :

dimensionless coordinate

δ(x):

delta-function

μ (x):

unit-step function

λ:

thermal conductivity

ρ:

mass density

τ:

relaxation time

ω:

wave velocity

References

  1. Ackerman CC, Bertman B, Fairbank HA, Guyer RA (1966) Second sound in solid helium. Phys Rev Lett 16:789–791

    Article  Google Scholar 

  2. Mc Nelly TF, Rogers SJ, Channin DJ, Rollefson RJ, Goubau WM, Schmidt GE, Krumhansl JA, Pohl RO (1970) Heat pulses in NaF: onset of second sound. Phys Rev Lett 24:102–102

    Article  Google Scholar 

  3. Chester M (1963) Second sound in solids. Phys Rev 131:2013–2015

    Article  Google Scholar 

  4. Gembarovič J, Majerník V (1987) Determination of thermal parameters of relaxation materials. Int J Heat Mass Transfer 30:199–201

    Article  Google Scholar 

  5. Gembarovič J, Majerník V (1988) Non-Fourier propagation of heat pulses in finite medium. Int J Heat Mass Transfer 31:1073–1080

    Article  MATH  Google Scholar 

  6. Chen HT, Lin JY (1993) Numerical analysis for hyperbolic heat conduction. Int J Heat Mass Transfer 36:2891–2898

    Article  MATH  MathSciNet  Google Scholar 

  7. Vedavarz A, Mitra K, Kumar S (1994) Hyperbolic temperature profiles for laser surface interactions. J Appl Phys 76:5014– 5021

    Article  Google Scholar 

  8. Tang DW, Araki N (1996) Analytical solution of non-Fourier temperature response in a finite medium under laser-pulse heating. Heat Mass Transfer 31:359–363

    Article  Google Scholar 

  9. Mitra K, Kumar S, Vedavarz A (1996) Parametric aspects of electron–phonon temperature model for short pulse laser interactions with thin metallic films. J Appl Phys 80:675–680

    Article  Google Scholar 

  10. Tang DW, Araki N (1999) Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser pulses. Int J Heat Mass Transfer 42:855–860

    Article  MATH  Google Scholar 

  11. Abdel-Hamid B (1999) Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform. Appl Math Model 23:899–914

    Article  MATH  Google Scholar 

  12. Kiwan S, Al-Nimr M, A1-Sharo’a M (2000) Trial solution methods to solve the hyperbolic heat conduction equation. Int Comm Heat Mass Transfer 27:865–876

    Article  Google Scholar 

  13. Chen HT, Peng SY, Yang PC, Fang LC (2001) Numerical method for hyperbolic inverse heat conduction problems. Int Comm Heat Mass Transfer 28:847–856

    Article  Google Scholar 

  14. Lewandowska M, Malinowsky L (2001) Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass Transfer 37:333–342

    Article  Google Scholar 

  15. Lewandowska M, Malinowsky L (2002) Thermal wave propagation due to localised heat inputs—the Laplace transforms method analysis. Heat Mass Transfer 38:459–466

    Article  Google Scholar 

  16. Haji-Sheikh A, Minkowycz WJ, Sparrow EM (2002) Certain anomalies in the analysis of hyperbolic heat conduction. J Heat Transfer 124:307–319

    Article  Google Scholar 

  17. Píšek F, Jeníček L, Ryš P (1968) Nauka o materiálu 1, Vlastnosti kovů, 2nd edn. Academie, Praha

    Google Scholar 

  18. Dekker AJ (1966) Fyzika pevných latok. Academie, Praha

    Google Scholar 

  19. Hartmanová M, Trnovcová V (1978) Iónové kryštály. Alfa, Bratislava

    Google Scholar 

  20. Jánoš S (1980) Fyzika nízkych teplôt. ALFA, Bratislava

    Google Scholar 

  21. Ascroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  22. Krempaský J (1988) Fyzika 2nd edn. Alfa, Bratislava

    MATH  Google Scholar 

  23. Bertman B, Sandifod DJ (1970) Second sound in solid helium. Sci Am 222:92–101

    Article  Google Scholar 

  24. Kaminski W (1990) Hyperbolic heat conduction for materials with a non-homogeneous inner structure. J Heat Transfer 112:555–560

    Article  Google Scholar 

  25. Zauderer E (1989) Partial differential equations, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  26. Arsenin J (1977) Matematická fyzika. ALFA, Bratislava

    Google Scholar 

  27. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  28. Klimenko MM, Krizanovski RE, Sherman VE (1979) Impulznyj metod opredelenia temperaturoprovodnosti. Teplofizika Vysokich Temperature 17:1216

    Google Scholar 

  29. Andrews LC (1992) Special functions of mathematics and engineers, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  30. Larson KB, Koyama K (1967) Correction for finite-pulse-time effects in very thin samples using the flash method of measuring thermal diffusivity. J Appl Phys 38:465–474

    Article  Google Scholar 

  31. Maglić KD, Taylor RE (1992) The apparatus for thermal diffusivity measurement by the laser pulse method. In: Compendium of thermophysical property measurement methods, vol 2. Plenum Publishing, New York, p 281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Beňačka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beňačka, J. On hyperbolic heat conduction in solids: minimum mean free path of energy carriers and a method of estimating thermal diffusivity and heat propagation characteristics. Heat Mass Transfer 44, 873–887 (2008). https://doi.org/10.1007/s00231-007-0289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0289-9

Keywords

Navigation