Skip to main content
Log in

The dynamics of a boiling bubble before and after detachment

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An overview is given of prediction methods for motion and deformation of a bubble that is created by boiling at a wall, at times before and after detachment, with a focus on added mass forces in the vicinity of the wall. The possibility to apply added mass coefficients derived in potential flows also to flows with vorticity is examined. An introduction to Lagrangian methods is given. Added mass tensors are derived for deforming bubbles at and away from a plane wall. Expressions for induced hydrodynamic lift forces are given, and validation experiments are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In the case of instantaneous motion with velocity U in the direction \({{\varvec e}_1, \phi= U x_1 + {{\frac{1}{2}}} U (d_b/2)^3x_1 r^{-3}}\) and Eq. (2) yields the familiar result \({2U \mu (2/d_b) \int ({\varvec{\nabla}} \phi)^2 {\rm d}S = 6 \pi \mu U d_b.}\)

  2. It is noted that if a cylindrical coordinate system is employed, a contour has to be chosen that excludes the axis where r = 0 and the inverse mapping not defined. If a different type of contour would be used, an erroneous minus sign would appear. In the case of a truncated sphere this necessitates a limiting procedure in order to cover A bL entirely.

Abbreviations

A :

area (m2)

A 11 :

added mass coefficient (–)

\({\tilde{A}_{rs}}\) :

added mass coefficient (–)

A c :

acceleration number (–)

b n :

generalized coordinate n (–)

c :

coefficient (–)

c AM :

added mass coefficient (–)

d b :

diameter of a bubble (m)

dS :

element of area (m2)

\({{\rm d}{{{\mathcal{V}} \hspace*{-0.5em}\rule[0.7ex]{0.4em}{.4pt}\,\,}}}\) :

element of volume (m3)

F :

force (N)

g :

acceleration of gravity (m2/s)

h :

distance of center to the wall (m)

I :

added mass tensor (–)

M :

mass (kg)

n :

normal (m)

U :

velocity (m/s)

q :

generalized coordinate

\({\dot{q}}\) :

Generalized velocity

Q :

generalized force

Q W :

generalized drag force (N)

r :

radius (m)

R :

radius (m)

Sr :

dimensionless vorticity (–)

t :

time (s)

T :

kinetic energy (J)

tr(β):

added mass coefficient (–)

v :

velocity (m/s)

V :

velocity parallel to the wall (m/s)

v b :

velocity of a bubble (m/s)

v L :

velocity of the liquid (m/s)

v rel :

velocity of object relative to fluid (m/s)

\({{{{\mathcal{V}} \hspace*{-0.5em}\rule[0.7ex]{0.4em}{.4pt}\,\,}}}\) :

volume (m3)

x :

coordinate (m)

x :

position vector (m)

x CM :

position of the center of mass (m)

y :

coordinate (m)

\({\dot{x}}\) :

velocity component in x-direction (m/s)

α:

added mass coefficient to U2 (–)

α2 :

added mass coefficient to V2 (–)

\({\partial {{{\mathcal{V}} \hspace*{-0.5em}\rule[0.7ex]{0.4em}{.4pt}\,\,}}}\) :

boundary of volume (m2)

γ m :

added mass coefficient m (–)

θ:

contact angle (o)

μ:

dynamic viscosity (kg/m/s)

ρ:

mass density (kg/m3)

σ:

surface tension coefficient (N/m)

ϕ:

velocity potential (m2/s)

\({\dot{\Phi}}\) :

energy dissipation rate (W)

ψ:

added mass coefficient (–)

ψ ij :

added mass coefficient i,j (–)

ω:

vorticity (1/s)

References

  1. Arnold VI (1980) Mathematical methods of classical mechanics. Graduate text in mathematics 60, 2nd edn. Springer, Heidelberg

    Google Scholar 

  2. Auton TR, Hunt JCR, Prud’Homme (1988) The force exerted on a body in inviscid, unsteady non-uniform rotational flow. J Fluid Mech 197:241–257

    Article  MATH  MathSciNet  Google Scholar 

  3. Bagchi P, Balachandar S (2002a) Shear versus vortex-induced lift force on a rigid sphere at moderate re. J Fluid Mech 473:379–388

    Article  MATH  MathSciNet  Google Scholar 

  4. Bagchi P, Balachandar S (2002b) Steady planar straining flow past a rigid sphere at moderate reynolds number. J Fluid Mech 466:365–407

    Article  MATH  MathSciNet  Google Scholar 

  5. Bagchi P, Balachandar S (2003a) Effect of turbulence on the drag and lift of a particle. Phys Fluids 15(11):3496–3513

    Article  Google Scholar 

  6. Bagchi P, Balachandar S (2003b) Inertial and viscous forces on a rigid sphere in straining flows at moderate reynolds numbers. J Fluid Mech 481:105–148

    Article  MATH  Google Scholar 

  7. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Bird RB, Stewart WE, Lightfoot EN (1976) Transport phenomena. Wiley, New York

    Google Scholar 

  9. Bonjour J, Lallemand M (2001) Two-phase flow structure near a heated vertical wall during nucleate pool boiling. Int J Multiphase Flow 27(10):1789–1802

    Article  MATH  Google Scholar 

  10. Burton TM, Eaton JK (2005) Fully resolved simulations of particle-turbulence interaction. J Fluid Mech 545:67–111

    Article  MATH  Google Scholar 

  11. Chang EJ, Maxey MR (1994) Accelerated motion of rigid spheres in unsteady flow at low to moderate Reynolds numbers. Part 1. Oscillatory motion. J Fluid Mech 277:347–379

    Article  MATH  Google Scholar 

  12. Chang EJ, Maxey MR (1995) Unsteady flow about a sphere at low to moderate Reynolds numbers. Part 2. Accelerated motion. J Fluid Mech 303:133–153

    Article  MATH  Google Scholar 

  13. Chatterjee J (2001) A criterion for buoyancy induced drop detachment based on an analytical approximation of the drop shape. Colloids Surf A 178:249–263

    Article  Google Scholar 

  14. Chesters AK (1977) An analytical solution for the profile and volume of a small drop or bubble symmetrical about a vertical axis. J Fluid Mech 81(4):609–624

    Article  MATH  MathSciNet  Google Scholar 

  15. Cleaver JW, Yates B (1973) Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. J Colloid Interface Sci 44(3):464–474

    Article  Google Scholar 

  16. Cuenot B, Magnaudet J, Spennato B (1997) The effects of slightly soluble surfactants on the flow around a spherical bubble. J Fluid Mech 339:25–53

    Article  MATH  Google Scholar 

  17. d’Abro A (1951) The rise of the new physics, vol 1, 1st edn. Dover Publications, New York

  18. Duineveld PC (1995) The rise velocity and shape of bubbles in pure water at high Reynolds numbers. J Fluid Mech 292:325–332

    Article  Google Scholar 

  19. Feynman RP, Leighton RB, Sands M (1967) The Feynman lectures on physics, vol II. Addison-Wesley, Reading

  20. Geld CWM van der (2005) Bubble motion induced by strong deformation near a plane wall. In Techn. Univ. Berlin Forschungsschwerpunkt~Fluidsystemtechnik, editor, Proc. of the 3th Int. Berlin Workshop on Transport phenomena with Moving Boundaries, pages 101–111. ISBN 3-00-017322-6

  21. Geld CWM van der (2002) On the motion of an spherical bubble deforming near a plane wall. J Eng Math 42:91–118

    Article  Google Scholar 

  22. Geld CWM van der (2004) Prediction of dynamic contact angle histories of a bubble growing at a wall. Int J Heat Fluid Flow 25:74–80

    Article  Google Scholar 

  23. Geld CWM van der, van Wingaarden H, Brand BA (2001) Experiments on the effect of acceleration on the drag of tapwater bubbles. Exp Fluids 31:708–722

    Article  Google Scholar 

  24. Goldstein H (1972) Classical mechanics. Addison-Wesley, Reading

  25. Govardhan R, Williamson CHK (2000) Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech 420:85–130

    Article  MATH  MathSciNet  Google Scholar 

  26. Helden WGJ van, van der Geld CWM, Boot PGM (1995) Forces on bubbles growing and detaching in flow along a vertical wall. Int J Heat Mass Transfer 38(11):2075–2088

    Article  Google Scholar 

  27. Higdon JJL, Muldowney GP (1995) Resitance functions for spherical particles, droplets and bubbles in cylindrical tubes. J Fluid Mech 298:193–210

    Article  MATH  Google Scholar 

  28. Howe MS (1995) On the force and moment on a body in an incompressible fluid, with application to rigid bodies and bubbles at high and low reynolds numbers. Q J Mech Appl Math 48(3):401–426

    Article  MATH  MathSciNet  Google Scholar 

  29. Kim S, Karrila S (1991) Microhydrodynamics. Butterworth, London

    Google Scholar 

  30. Kim I, Elghobashi S, Sirignano WA (1993) Three-dimensional flow over two spheres placed side by side. J Fluid Mech 246:465–488

    Article  MATH  Google Scholar 

  31. Kim I, Elghobashi S, Sirignano WA (1998) On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J Fluid Mech 384:221–253

    Article  MathSciNet  Google Scholar 

  32. Kovac˘ević M, van der Geld CWM (2005) 3-d measurements of vapour bubble detachment with uniform approaching flow. Arch Thermodynamics 26(4):37–47

    Google Scholar 

  33. Kurose R, Komori S (1999) Drag and lift forces on a rotating sphere in a linear shear flow. J Fluid Mech 384:183–206

    Article  MATH  MathSciNet  Google Scholar 

  34. Lamb H (1957) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  35. Legendre D, Magnaudet J (1998) The lift force on a spherical bubble in a viscous linear shear flow. J Fluid Mech 368:81–126

    Article  MATH  MathSciNet  Google Scholar 

  36. Legendre D, Borée, Magnaudet J (1998) Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys Fluids 10(6):1256–1272

    Article  Google Scholar 

  37. Magnaudet J, Eames I (2000) The motion of high-reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech 32:659–708

    Article  MathSciNet  Google Scholar 

  38. Magnaudet J, Legendre I (1998) Some aspects of the lift force on a spherical bubble. Appl Sci Res 58:441–461

    Article  MATH  Google Scholar 

  39. Magnaudet J, Rivero M, Fabre J (1995) Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J Fluid Mech 284:97–135

    Article  MATH  MathSciNet  Google Scholar 

  40. Mann M, Stephan K, Stephan P (2000) Influence of heat conduction in the wall on nucleate boiling heat transfer. Int J Heat Mass Transfer 43:2193–2203

    Article  MATH  Google Scholar 

  41. Maxey MR, Riley JJ (1994) Equation of a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  Google Scholar 

  42. Mei R, Lawrence CJ, Adrian RJ (1991) Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J Fluid Mech 233:613–631

    Article  MATH  Google Scholar 

  43. Mougin G, Magnaudet J (2002) The generalized kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow. Int J Multiphase Flow 28:1837–1851

    Article  MATH  Google Scholar 

  44. Padday JF (1978) Wetting, spreading and adhesion. Academic,

  45. Passos JC, Hirata FR, Possamai LFB, Balsamo M, Misale M (2004) Confined boiling of fc72 and fc87 on a downward facing heating copper disk. Int J Heat Fluid Flow 25(2):313–319

    Article  Google Scholar 

  46. Pipes LA (1958) Applied mathematics for engineers and physicists, 2nd edn. McGraw-Hill, New York

  47. Rivero M, Magnaudet J, Fabre J (1991) Quelques resultats nouveaux concernant les forces exercées sur une inclusion spherique par un écoulement acceleré. CR Acad Sci Paris 312(II):1499–1506

    MATH  Google Scholar 

  48. Saffman PG (1993) Vortex dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  49. Stralen S van, Cole R (1979) Boiling phenomena, vol 1 and 2. McGraw-Hill, Hemisphere

  50. Thorncroft GE, Klausner JF, Mei R (1998) An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling. Int J Heat Mass Transfer 41:3857–3871

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the EC project AD-700-2. I thank prof. J. Passos for providing a stimulating place to study, and Dr. J. Kuerten for useful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. M. van der Geld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Geld, C.W.M. The dynamics of a boiling bubble before and after detachment. Heat Mass Transfer 45, 831–846 (2009). https://doi.org/10.1007/s00231-007-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0254-7

Keywords

Navigation