Advertisement

Heat and Mass Transfer

, Volume 44, Issue 3, pp 315–324 | Cite as

Freon R141b flow boiling in silicon microchannel heat sinks: experimental investigation

  • Tao DongEmail author
  • Zhaochu Yang
  • Qincheng Bi
  • Yulong Zhang
Original

Abstract

This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 (W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from 400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation (Heat Transf Eng 25(3):86–93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise.

Keywords

Pressure Drop Heat Transfer Coefficient Mass Velocity Annular Flow Vapor Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

A

heat transfer area between copper spreader and silicon substrate (m2)

Across

cross-section area of a microchannel (m2)

Dh

hydraulic diameter (m)

f

friction factor (8τ w/ρu 2)

G

mass velocity (kg m−2 s−1)

hin

the inlet specify enthalpy of test section (kJ kg−1)

hout

the outlet specify enthalpy of test section (kJ kg−1)

hsat,l

specify enthalpy of saturated liquid (kJ kg−1)

hsat,v

specify enthalpy of saturated vapor (kJ kg−1)

htp

mean heat transfer coefficient of two-phase (W m−2 K−1)

L

heat length (m)

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{m} \)

mass flux (kg s−1)

q

heat flux (W m−2)

Tf

fluid temperature (°C)

Tw,i

wall temperature (°C)

u

velocity (m s−1)

x

mass vapor quality

Greek symbols

α

void fraction

δ

the distance from the bottom of silicon substrate to the bottom of microchannel (m)

Δp

pressure drop (Pa)

η

heat efficiency

μ

dynamic viscosity (kg m−1 s−1)

λ

heat conduction coefficient (W m−1 s−1)

ρ

fluid density (kg m−3)

Subscripts

a

acceleration

f

fluid

h

hydraulic

l

liquid phase

pre

pre-heating

s

silicon

sat

saturation

sp

single-phase

tp

two-phase

v

vapor phase

w

wall

Notes

Acknowledgment

The research is supported by National Natural Science Foundation of China (No. 50406019), China Postdoctoral Science Foundation (No. 20040350669), and Postdoctoral Science Research Foundation Program of Jiangsu Province.

References

  1. 1.
    Guo ZY (2000) Frontier of heat transfer—microscale heat transfer. Adv Mech 30:1–6 (in Chinese)Google Scholar
  2. 2.
    Hassan I, Phuttavong P, Abdelgawad (2004) Microchannel heat sinks: an overview of the state-of-the-art. Microscale Therm Eng 8:183–205CrossRefGoogle Scholar
  3. 3.
    Hetsroni G, Mosyak A, Segal Z, Pogrebnyak E (2003) Two-phase flow patterns in parallel micro-channels. Int J Multiph Flow 29:341–360CrossRefGoogle Scholar
  4. 4.
    Jiang L, Wong M, Zohar Y (2001) Forced convection boiling in a microchannel heat sink. J Microelectromech Syst 10:80–87CrossRefGoogle Scholar
  5. 5.
    Kandlikar SG (2002) Fundamental issues related to flow boiling in minichannel and microchannels. Exp Therm Fluid Sci 26:389–407CrossRefGoogle Scholar
  6. 6.
    Kandlikar SG, Balasubramanian P (2004) An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transf Eng 25(3):86–93CrossRefGoogle Scholar
  7. 7.
    Lin S, Kew PA, Cornwell K (2001) Two-phase heat transfer to a refrigerant in a 1 mm diameter tube. Int J Ref 24:51–56CrossRefGoogle Scholar
  8. 8.
    Lin ZH, Wang SZ, Wang D (2003) Gas–liquid two-phase flow and boiling heat transfer. Xi’an Jiaotong University Press, Xi’an (in Chinese)Google Scholar
  9. 9.
    Mala GM, Li D (1999) Flow characteristics of water in microtubes. Int J Heat Fluid Flow 20:142–148CrossRefGoogle Scholar
  10. 10.
    McLinden MO, Lemmon EW, Klein SA (1998) Thermodynamic and transport properties of refrigerants and refrigerant mixture. NIST Standard Reference Database 23—Version 6.01Google Scholar
  11. 11.
    Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651CrossRefGoogle Scholar
  12. 12.
    Palm B (2001) Heat transfer in microchannels. Microscale Therm Eng 5:155–175CrossRefGoogle Scholar
  13. 13.
    Papautsky I, Ameel T, Frazier AB (2001) A review of laminar single-phase flow in microchannels. In: Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11–16, 2001, New York, NYGoogle Scholar
  14. 14.
    Peng XF, Liu D, Lee DJ, Yan Y, Wang BX (2000) Cluster dynamics and fictitious boiling in microchannels. Int J Heat Mass Transf 43:4259–4265zbMATHCrossRefGoogle Scholar
  15. 15.
    Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water in microchannel structures. Int J Heat Mass Transf 39:2599–2608CrossRefGoogle Scholar
  16. 16.
    Peng XF, Wang BX (1998) Forced convection and boiling characteristics in microchannels. In: Proceedings of 11th IHTC, August 23–28, Kyongju, Korea, vol 1, pp 371–390Google Scholar
  17. 17.
    Qu W, Mudawar I (2003) Flow boiling heat transfer in two-phase micro-channel heat sinks—I. Experimental investigation and assessment of correlation methods. Int J Heat Mass Transf 46:2755–2771CrossRefGoogle Scholar
  18. 18.
    Stanley RS, Barron RF, Ameel TA (1997) Two-phase flow in microchannels. ASME Microelectromechanical Systems (MEMS) DSC-Vol.62/HTD-Vol.354, pp 143–152Google Scholar
  19. 19.
    Thome JR (2004) Boiling in microchannels: a review of experiment and theory. Int J Heat Fluid Flow 25:128–139CrossRefGoogle Scholar
  20. 20.
    Tuckerman DB, PeaseRFW (1981) High performance heat sink for VISI. IEEE Electron Device Lett 4:126–129Google Scholar
  21. 21.
    Wu HY, Cheng P (2003) Visualization and measurements of periodic boiling in silicon microchannels. Int J Heat Mass Transf 46:2603–2614CrossRefMathSciNetGoogle Scholar
  22. 22.
    Wu PY, Little WA (1984) Measuring of the heat transfer characteristics of gas flow in fine channel heat exchangers for micro miniature refrigerators. Cryogenics 24:415–420CrossRefGoogle Scholar
  23. 23.
    Xu B, Ooi KT, Wong NT (2000) Experimental investigation of flow friction for liquid flow in microtubes. Int Commun Heat Mass Transf 27:1165–1176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tao Dong
    • 1
    • 2
    Email author
  • Zhaochu Yang
    • 3
  • Qincheng Bi
    • 3
  • Yulong Zhang
    • 1
  1. 1.Pen-Tung Sah Micro-Electro-Mechanical Systems Research CenterXiamen UniversityXiamenPeople’s Republic of China
  2. 2.State Key Laboratory for Prevention and Control of Explosive DisastersBeijing Institute of TechnologyBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations