Squeezed flow and heat transfer over a porous surface for viscous fluid


Flow and heat transfer over a permeable sensor surface placed in a squeezing channel is analyzed. A constant transpiration through the sensor surface is assumed. Locally non-similar momentum and energy equations are solved by three different methods, against the transpiration parameter τ, for different values of the squeezing parameter b, and Prandtl number Pr. From the investigation, it is found that when the channel being squeezed, the skin-friction reduces but the heat transfer coefficient increases. Increase in the value of the squeezing parameter onsets reverse flow at the sensor surface when fluid is being injected and the affect is enhanced with the increase of injection through the surface. It is further observed that increase of suction of fluid through the sensor thins the thermal and the momentum boundary layer regions, whereas injection of fluid leads to thickening of both the thermal and the momentum boundary layer regions. Heat transfer from the surface of the sensor increases with the increase of the value of Pr for the entire range of surface mass-flux parameter τ.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


a :

squeeze flow strength

b :

index of the squeeze flow

f :

transformed stream function

h :

height of the channel

k :

fluid thermal conductivity

Nu :

Nusselt number

Pr :

fluid Prandtl number

q :

heat flux

q 0 :

reference heat flux

Re :

free stream Reynolds number

T :

fluid temperature

T :

free stream temperature

t :


U :

free stream velocity

τw :

shear stress at the surface

u :

dimensional axial velocity

v :

dimensional normal velocity

V 0 :

surface mass flux

x :

axial distance

y :

normal distance


fluid thermal diffusivity


similarity transformation in terms of y and x


fluid dynamic viscosity


transformed fluid temperature


fluid density


kinematic viscosity


stream function


transpiration parameter


  1. 1.

    Lavrik NV, Tipple CA, Sepaniak MJ, Datskos D (2001) Gold nano-structure for transduction of biomolecular interactions into micrometer scale movements. Biomed Microdev 3:35– 44

    Article  Google Scholar 

  2. 2.

    Langlois WE (1962) Isothermal squeeze films. Q Appl Math XX:131–150

    Google Scholar 

  3. 3.

    Damodaran SH, Rankin GW, Zhang C (1999) Effect of a moving boundary on pulsatile flow of incompressible fluid in a tube. Comput Mech 23:20–32

    MATH  Article  Google Scholar 

  4. 4.

    Bhattacharjee RC, Das NC, Pal AK (1999) Analysis of an unsteady squeezing flow of dusty fluids. Tribol Int 32:427–434

    Article  Google Scholar 

  5. 5.

    Hamza EA (1992) Unsteady flow between two disks with heat transfer in the presence of a magnetic field. J Phys D: Appl Phys 25:1425–1431

    Article  Google Scholar 

  6. 6.

    Bhattacharyya S, Pal A, Nath G (1996) Unsteady flow and heat transfer between rotating coaxial disks. Numer Heat Transf Part A 30:519–532

    Article  Google Scholar 

  7. 7.

    Debbaut B (2001) Non-isothermal and viscoelastic effects in the squeeze flow between infinite plates. J Non-Newtonian Fluid Mech 98:15–31

    MATH  Article  Google Scholar 

  8. 8.

    Khaled A, Vafai K (2004) Hydormagnetic squeezed flow and heat transfer over a sensor surface. Int J Eng Sci 42:509–519

    Article  Google Scholar 

  9. 9.

    Keller M, Yang KT (1972) A Görtler-type series for laminar free convection along a non-isothermal vertical flat plate. Q J Mech Appl Math 25:447–457

    Article  Google Scholar 

  10. 10.

    Kao TT, Domoto GA, Elrod HG Jr (1977) Free convection along a non-isothermal vertical flat plate. Trans ASME J Heat Transf 99:72–78

    Google Scholar 

  11. 11.

    Yang J, Jeng DR, DeWitt KJ (1982) Laminar free convection from a vertical plate with non-uniform surface conditions. Num Heat Transf 5:165–184

    Article  Google Scholar 

  12. 12.

    Merk HJ (1959) Rapid calculation for boundary layer transfer using wedge solutions and asymptotic expansions. J Fluid Mech 5:460–480

    MATH  Article  Google Scholar 

  13. 13.

    Sparrow EM, Yu PR (1971) Local non-similarity thermal boundary layer solutions. J Heat Transfer 93:328–334

    Google Scholar 

  14. 14.

    Minkowycz WJ, Sparrow EM. (1974) Local non-similarity solutions for natural convection on vertical cylinder. J Heat Transfer 96:178–183

    Google Scholar 

  15. 15.

    Chen TS (1988) Parabolic system: local non-similarity method in handbook of numerical heat transfer. In: Minkowycz WJ, Sparrow EM, Scheider GE, Pletcher RH (eds) Wiley, New York

  16. 16.

    Hossain MA, Takhar HS (1996) Radiation effect on mixed convection along a vertical plate with uniform temperature. J Heat Mass Transf 31:243–248

    Google Scholar 

  17. 17.

    Nachtsheim PR, Swigert P (1965) Satisfaction of the asymptotic boundary conditions in numerical solution of the system of non-linear equations of boundary layer type. NASA TND-3004

Download references

Author information



Corresponding author

Correspondence to M. A. Hossain.

Additional information

M. A. Hossain is on leave of absence from University of Dhaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahmood, M., Asghar, S. & Hossain, M.A. Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat Mass Transfer 44, 165–173 (2007). https://doi.org/10.1007/s00231-006-0218-3

Download citation


  • Heat Transfer
  • Heat Transfer Coefficient
  • Thermal Boundary Layer
  • Local Nusselt Number
  • Sensor Surface