Skip to main content
Log in

Evaluating thermal performance of a single slope solar still

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The distillation is one of the important methods of getting clean water from brackish and sea water using the free energy supply from the sun. An experimental work is conducted on a single slope solar still. The thermal performance of the single slope solar still is examined and evaluated through implementing the following effective parameters: (a) different insulation thicknesses of 1, 2.5 and 5 cm; (b) water depth of 2 and 3.5 cm; (c) solar intensity; (d) Overall heat loss coefficient (e) effective absorbtivity and transmissivity; and (f) ambient, water and vapor temperatures. Different effective parameters should be taken into account to increase the still productivity. A mathematical model is presented and compared with experimental results. The model gives a good match with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A s :

basin liner still area, (m2)

A ss :

side still area (m2)

a :

equation constant, Eqs. 27, 30

h cb :

basin liner convection heat transfer coefficient (W/m2 K)

h b :

basin liner overall heat transfer coefficient (W/m2 K)

h cg :

glass cover convection heat transfer coefficient (W/m2 K)

h cw :

heat loss coefficient by convection from water surface (W/m2 K)

h ew :

heat loss coefficient by evaporation from water surface (W/m2 K)

h rb :

basin liner radiative heat transfer coefficient (W/m2 K)

h rg :

glass cover radiative heat transfer coefficient (W/m2 K)

h rw :

basin water radiative heat transfer coefficient (W/m2 K)

h tg :

total glass heat transfer loss coefficient (W/m2 K)

h w :

convective heat transfer coefficient from basin to water (W/m2 K)

h tw :

total water surface heat transfer loss coefficient (W/m2 K)

I :

solar intensity (W/m2)

k ins :

insulation thermal conductivity (W/m K)

L ins :

insulation thickness (m)

M :

total mass productivity/day (kg/day)

(MC)w :

water heat capacity rate of water per unit area (J/m2K)

P g :

glass saturated partial pressure (N/m2)

P w :

water saturated partial pressure (N/m2)

q g :

rate of total energy from the glass cover (W/m2)

q b :

rate of total energy from basin liner (W/m2)

q bg :

rate of energy lost from basin liner to the ground (W/m2)

q cg :

rate of energy lost from the glass cover by convective (W/m2)

q ew :

rate of energy lost from water surface by evaporation (W/m2)

q cw :

rate of energy lost from water surface by convection (W/m2)

q rg :

rate of energy lost from the glass cover by radiation (W/m2)

q rw :

rate of energy lost from water surface by radiation (W/m2)

q s :

rate of energy lost from the basin liner through the side of the still (W/m2)

Tw 0 :

temperature of basin water (K)

Tg in :

temperature of inside glass (K)

Tg out :

temperature of outside glass (K)

T a :

ambient temperature (K)

T b :

basin liner temperature (K)

T g :

still glass cover (K)

T sky :

sky temperature (K)

T v :

still vapor temperature (K)

T w :

still water temperature (K)

t :

time (s)

U b :

overall bottom heat lost coefficient (W/m2 K)

U t :

overall top heat loss coefficient (W/m2 K)

U e :

overall side heat loss coefficient (W/m2 K)

U l :

overall heat loss coefficient (W/m2 K)

R t :

thermal resistance (m2 K/W)

V :

wind speed (m/s)

h fg :

latent heat of vaporization (kJ/kg K)

αb :

absorbtivity fraction of energy absorbed by the basin liner

αg :

absorbtivity fraction of energy absorbed by the glass cover

αw :

absorbtivity fraction of energy absorbed by the water surface

τ:

transmissivity

ɛg :

glass emissivity

ɛw :

water emissivity

ɛeff :

effective emissivity

ηi :

instantaneous efficiency

ηvol :

volumetric effeciency

β:

collector tilt angle (deg)

σ:

Stephan–Boltzman coefficient (W/m2k4)

Δ:

difference

0:

initial value

out:

outlet

in:

inlet

References

  1. Aboul-Enein S, El-Sebaii AA, El-Bialy E (1998) Investigation of a single-basin solar still with deep basins. Renew Energy 14(1–4):299–305

    Article  Google Scholar 

  2. Akash BA, Mohsen MS, Osta O, Elayan Y (1998) Experimental evaluation of a single-basin solar still using different absorbing materials. Renew Energy 14(1–4):307–310

    Article  Google Scholar 

  3. Akash BA, Mohsen MS, Nayfeh W (2000) Experimental study of the basin type solar still under local climate conditions. Energy Convers Manage 41(9):883–890

    Article  Google Scholar 

  4. Al-Hayek I, Badran O (2004) The effect of using different designs of solar stills on water distillation. Desalination 169(2):121–127

    Article  Google Scholar 

  5. Al-Hinai H, Al-Nassri MS, Jubran BA (2002a) Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers Manage 43(13):1639–1650

    Article  Google Scholar 

  6. Al-Hinai H, Al-Nassri MS, Jubran BA (2002b) Parametric investigation of a double-effect solar still in comparison with a single-effect solar still. Desalination 150(1):75–83

    Article  Google Scholar 

  7. Al-Karaghouli AA, Alnaser WE (2004a) Experimental comparative study of the performances of single and double basin solar-stills. Appl Energy 77(3):317–325

    Article  Google Scholar 

  8. Al-Karaghouli AA, Alnaser WE (2004b) Performances of single and double basin solar-stills. Appl Energy 78(3):347–354

    Article  Google Scholar 

  9. Boukar M, Harmim A (2001) Effect Of Climate Conditions On The Performance of a Simple Basin Solar Still: A Comparative Study. Desalination 137(1-3):15–22

    Article  Google Scholar 

  10. Boukar M, Harmim A (2004) Parametric study of a vertical solar still under desert climatic conditions. Desalination 168:21–28

    Article  Google Scholar 

  11. Duffie JA, Beckman WA (1991) Solar Engineering of thermal processes. Madison, Wisconsin, USA

    Google Scholar 

  12. El-Sebaii AA (1998) Parametric study of a vertical solar still. Energy Convers Manage 39(13):1303–1315

    Article  Google Scholar 

  13. El-Sebaii AA (2000) Effect of wind speed on some designs of solar stills. Energy Convers Manage 41(6):523–538

    Article  Google Scholar 

  14. El-Sebaii AA (2004) Effect of wind speed on active and passive solar stills. Energy Convers Manage 45(7–8):1187–1204

    Article  Google Scholar 

  15. El-Sebaii AA (2005) Thermal performance of a triple-basin solar still. Desalination 174(1):23–37

    Article  Google Scholar 

  16. Fath HES., El-Samanoudy M, Fahmy K, Hassabou A (2003) A Thermal-Economic Analysis And Comparison Between Pyramid Shaped And Single-Slope Solar Still Configurations. Desalination 159:69–79

    Article  Google Scholar 

  17. Fernandez JL, Chargoy N (1990) Multi-stage indirect heated solar still. Solar Energy (44):215–23

    Article  Google Scholar 

  18. Goosen M, Sabalani S, Shyya W, Paton C, Al-Hinai H (2000) Thermodynamic and Economic Considerations In Solar Desalination. Desalination 129:63–89

    Article  Google Scholar 

  19. Hamdan MA, Musa AM, Jubran BA (1999) Performance of solar still under Jordanian climate. Energy Convers Manage 40(5):495–503

    Article  Google Scholar 

  20. Jubran BA, Ahmed MI, Ismail AF, Abakar YA (2000) Numerical modelling of a multi-stage solar still. Energy Convers Manage 41(11):1107–1121

    Article  Google Scholar 

  21. Kalogirou SA (2004) Solar thermal collectors and application. Prog Energy Combust Sci 30(3):231–295

    Article  Google Scholar 

  22. Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog Energy Combust Sci 31(3):242–281

    Article  Google Scholar 

  23. Khalifa AJ, Al-Jubouri AS, Abed MK (1999) An experimental study on modified simple solar stills. Energy Convers Manage 40(17):1835–1847

    Article  Google Scholar 

  24. Malik MAS, Tiwari GN, Kumar A, Sodha MS (1982) Solar distillation. Pergamon press Ltd, New York

    Google Scholar 

  25. Mathioulakis E, Voropoulos K, Belessiotis V (1999) Modeling and prediction of long-term performance of solar stills. Desalination 122(1):85–93

    Article  Google Scholar 

  26. Mills AF (1995) Basic heat and mass transfer. Richard D. Irwin series in Heat Transfer, USA

  27. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA (2000) Parameters affecting solar still productivity. Energy Convers Manage 41(16):1797–1809

    Article  Google Scholar 

  28. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk A (2001) ”Solar still Productivity enhancement. Energy Convers Manage 42(11):1401–1408

    Article  Google Scholar 

  29. Nijmeh S, Odeh S, Akash B (2005) Experimental and theoretical study of a single-basin solar still in Jordan. Int comm In Heat Mass Transfer 32:565–572

    Article  Google Scholar 

  30. Sawhney RL, Kamal R (1992) Solar energy and conservation. Wiley Eastern Limited, New Delhi

    Google Scholar 

  31. Srivastava NSL, Din GN, Tiwari GN (2000) Performance Evaluation Of Distillation-Cum-Greenhouse For a Warm and Humid Climate. Desalination 128:67–80

    Article  Google Scholar 

  32. Suneja S, Tiwari GN (1999) Effect of water depth on the performance of an inverted absorber double basin solar still. Energy Convers Manage 40(17):1885–1897

    Article  Google Scholar 

  33. Tiwari GN (1992) Contemporary physics–solar energy and energy conservation. In: Recent Advances in Solar Distillation. Wiley Eastern Ltd., New Delhi. Chapter II

  34. Tiwari GN (2002) Solar Energy. Narosa Publishing House. New Delhi

    Google Scholar 

  35. Tiwari GN, Noor MA (1996) Characterization of solar still. Int J Solar Energy 18:147

    Google Scholar 

  36. Tiwari GN, Prasad B (1996) Thermal modeling of concentrator assisted solar distillation with water flow over the glass cover. Int J Solar Energy 18(3):173

    Google Scholar 

  37. Tiwari GN, Kupfermann A, Agrawal S (1997) A new design of double condensing chamber solar still. Desalination 114:153

    Article  Google Scholar 

  38. Tiwari GN, Singh HN, Tripathi R (2003a) Present Status of Solar Distillation. Solar Energy 75:367–373

    Article  Google Scholar 

  39. Tiwari GN, Shukla SK, Singh IP (2003b) Computer modeling of Passive/active solar still by using inner glass temperature. Desalination 154(2):171–185

    Article  Google Scholar 

  40. Tripathi R, Tiwari GN (2004) Performance evaluation of a solar still by using the concept of solar fractionation. Desalination 169(1):69–80

    Article  Google Scholar 

  41. Voropoulos K, Mathioulakis E, Belessiotis V (2003) Analytical simulation of energy behavior of solar stills and experimental validation. Desalination 153(1–3):87–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen M. Abu-Khader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badran, O.O., Abu-Khader, M.M. Evaluating thermal performance of a single slope solar still. Heat Mass Transfer 43, 985–995 (2007). https://doi.org/10.1007/s00231-006-0180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0180-0

Keywords

Navigation