Skip to main content
Log in

Effects of a directed co-flow on a non-reactive turbulent jet with variable density

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present study, the effects of a directed co-flow on the process of mixture jet with variable density have been investigated numerically. Three density ratios were considered namely Rρ=0.55, 1.5 and 1.52, respectively, for binary mixtures methane-air, carbon dioxide-air and propane-air. The directed co-flow preserves its axial symmetry at the inlet and its direction varies between +20° and −20°. In addition, the k − ɛ model and model equation of the algebraic non-equal scales are used to investigate effects of the variable density in axisymmetric turbulent jet. Comparative studies are presented in the case of the calculations of the average variables such as the longitudinal velocity, species concentration and the turbulent kinetic energy. The results obtained indicate that the directed co-flow with positive angles enhances considerably the mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thring MW, Newby MP (1953) Combustion length of enclosed turbulent flames. In: Proceedings of the fourth international symposium one combustion, The Institute Combustion, pp789–796

  2. So R, Zhu JH (1990) Some measurements in a binary gas exp. Jet Fluids 9:237–284

    Google Scholar 

  3. Gouldin FV, Schefer RW, Johnson SC, Kollmann W (1986) Non-reacting turbulent mixing flows. Prog Energy Combust Sci 12:257–303

    CAS  Google Scholar 

  4. Fulachier L, Anselmet F, Amielh M (1990) Turbulent jets with variable density, PRC combustion in the rocket motors cryotechnic. CNRS/CNES/SEF

  5. Chassaing P, Harran G, Joly L (1994) Turbulent density fluctuation correlation in free binary mixture. J Fluid Mech 179:239–278

    Google Scholar 

  6. Panchapakesan NR, Lumley JL (1993) Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air Jet. Part 2. Hélium jet. J Fluid Mech 246:197–223, 225–247

    CAS  Google Scholar 

  7. Purwanto A (1994) Modelling of turbulent flow low speed with strong variation of density. PhD Thesis, INP, Toulouse

  8. Pietri L, Amielth M, Anselment F (2000) Simultaneous measurements of temperature and velocity fluctuations in a highly heated jet combining a cold wire and laser Doppler anemometry. Int J Heat Fluid Flow 21:22–36

    Article  Google Scholar 

  9. Gazzah MH, Sassi M, Sarh B, et Gökalp I (2002) Simulation numérique des jets turbulents subsoniques à masse volumique variable par le modèle k − ɛ. Int J Thermal Sci 41(1):51–62

    Article  CAS  Google Scholar 

  10. Abramovich GN (1963) The theory of turbulent jets. MIT Press, Cambridge, MA

    Google Scholar 

  11. Curtet R (1957) Contribution à l’étude thèorique des jets de révolution. Extrait des comptes rendus de l’académie des sciences 244:1450–1453

    Google Scholar 

  12. Steward FR, Guruz AG (1977) Aerodynamic of a confined jet with variable density. Combust Sci Tech 16:29–45

    CAS  Google Scholar 

  13. Djeridane T (1994) Contribution à l’étude expèrimentale de jets turbulents axisymétriques à densité variable, Thèse de doctorat, université d’Aix-Marseille II.

  14. Ruffin E (1994) Etude de jets turbulents à densité variable à l’aide de modèles de transport au second ordre. Thèse de doctorat, Université d’Aix Marseille

    Google Scholar 

  15. Raddaoui M (1997) Modélisation numérique et etude expérimentale du mélange d’echelles dans un jet turbulent confiné. Thèse de doctorat, Université d’Aix Marseille

    Google Scholar 

  16. Lucas JF (1998) Analyse du champ scalaire au sein d’un jet turbulent axisymétrique à densité variable. Thèse de doctorat, Université d’Aix Marseille

    Google Scholar 

  17. Pagé J (1998) Contribution à l’étude des jets turbulents axisymètrique à masse volumique variable. Thèse de doctorat, Université d’Orléans

    Google Scholar 

  18. Gazzah MH (2002) Contribution à l’étude d‘un jet turbulent à masse volumique variable. Thèse de doctorat, Ecole Nationale d’Ingénieurs de Monastir, Tunisie

    Google Scholar 

  19. Schefer RW, Dibble RW (2001) Mixture field fraction in A turbulent nonreacting propane jet. AIAA Newspaper 39(1):64–72

    CAS  Google Scholar 

  20. Belaradh N, GökalpI (2001) Etude d’un jet turbulent axisymétrique confiné. Influence de la variation de la masse volumique. In: XVème Congrès Français de Mécanique, Nancy 3–7 September 2001, pp478–484

  21. Hirai S, Takagi T (1991) Numerical prediction of turbulent mixing in a variable density swirling pipe flow. Int J Heat Mass Transfer 34(12):3143–3150

    CAS  Google Scholar 

  22. Sarh B (1990) Contribution à l’étude des jets turbulents à masse volumique variable et des flammes turbulents de diffusion. Thèse de doctorat, Université de Pierre et Marie Curie, Paris

    Google Scholar 

  23. Yoshizawa A (1988) Statistical modelling of passive-scalar diffusion in turbulent shear flows. J Fluid Mech 195:541

    CAS  Google Scholar 

  24. Hidouri A, Gazzah MH, Ben Ticha H, Sassi M (2003) Dynamic and scalar turbulent fluctuation in a diffusion flame of an-axisymmetric methane jet into air. Comput Mech 31:253–261

    Google Scholar 

  25. Favre A, Kovasnay LSG, Dumas R, Gaviglio J, Coantic M (1976) La turbulence en mècanique des fluides: bases théoriques et expérimentales, methods statistiques. Bordas, Gaulthier-Villars, Paris. ISBN 2-04-003566-4

  26. Sanders JPH, Sarh B, Gökalp I (1997) Variable density effects in axisymmetric isothermal turbulent jets: a comparison between a first-order and a second-order turbulence model. Int J Heat Mass Transfer 40(4):823–842

    Article  CAS  Google Scholar 

  27. Sanders JPH, Gökalp I (1998) Scalar dissipation rate modelling in variable density turbulent axisymmetric jets and diffusion flames. Phys Fluids 10(4):938–948

    CAS  Google Scholar 

  28. Mhiri H (1999) Etude numérique des conditions d’émission sur un ècoulement de type jet plan turbulent isotherme ou chauffé. Revue générale de la Thermique 38:904–915

    Article  CAS  Google Scholar 

  29. Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers. Intertext, London

    Google Scholar 

  30. Jones WP, Musonge P (1988) Closure of the Reynolds stress ans scalar flux equations. Phys Fluid 31:3589

    Article  Google Scholar 

  31. Ruffin E, Schiestel R, Anselmet F, Amielh M, Fulachier L (1994) Investigation of characteristic scales in variable density turbulent jets using a second-order model. Phys Fluids 6(8):2785–2799

    CAS  Google Scholar 

  32. Dibble RW, Kolmann W, Farshchi M, Schefer RW (1986) Second-order closure for turbulent non premixed flames: scalar dissipation and hear release effects. In: Proceeding of the 21st symposium (international) on combustion, The Combustion Institute, Pittsburgh, pp 1329–1337

  33. Gharbi A, Ruffin E, Anselmet F, Schiestel R (1996) Numerical modelling of variable density turbulent jets. Int J Heat Transfer 39(9):1865–1882

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Imine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imine, B., Saber-Bendhina, A., Imine, O. et al. Effects of a directed co-flow on a non-reactive turbulent jet with variable density. Heat Mass Transfer 42, 39–50 (2005). https://doi.org/10.1007/s00231-005-0661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0661-6

Keywords

Navigation