Skip to main content
Log in

Turbulent film condensation on an isothermal cone surface

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

It is an investigation of turbulent film condensation on an isothermal cone. The present paper describes the eddy diffusivity of two turbulent models. And then it discusses the film thickness and heat transfer characteristics under the different turbulent models. The results show the mean heat transfer coefficient on two forms of eddy diffusivity, and there is a variation on the two models. Furthermore, the current results are compared with those generated by previous theoretical investigations. It is found that in high vapor velocity, the mean heat transfer was greater than that of the laminar flow theory. Under the high vapor velocity region, the eddy effect will be an important factor for the heat transfer of turbulent condensate film. Besides, in the low vapor velocity region, the eddy diffusivity seldom influences the heat transfer of condensate film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C p :

Specific heat of condensate at constant pressure (J/kg/k)

f :

Average friction coefficient τ/(ρ u 2/2)

F :

Condensation parameter 1/(SFr)

Fr :

Froude number, u 2 /gL

Gr :

Modified Grashof number (gL 3 2l )((ρl − ρv)/(ρl))

g :

Acceleration due to gravity (m/s2)

h :

Local heat transfer coefficient (w/m2 K)

h fg :

Latent heat of condensate (J/kg)

k :

Thermal conductivity (W/mK)

k l :

Thermal conductivity of condensate film (W/mK)

L :

Haracteristic length (m)

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number, u L

L + :

Reynolds shear number, Lu/v t

L * :

Wall shear parameter L +/Gr 1/3

S :

Sub-cooling parameter C p(T s-Tw)/h fg Pr

St :

Stanton number

T :

Temperature (K)

T + :

Dimensionless temperature (TT w)/(T sT w)

U :

Velocity component in x-direction (m/s)

u e :

Tangential velocity at edge of vapor boundary layer (m/s)

u * :

Shear velocity \({\sqrt {\tau _{{\text{w}}} /\rho } }\)

u :

The vapor velocity of the free stream (m/s)

u + :

Dimensionless velocity u/u*

x :

Coordinate of measured distance along cone wall (m)

X :

Dimensionless coordinate along cone wall, X = x/L

y :

Coordinate of measured distance normal to the cone wall (m)

y + :

Dimensionless distance yu*/v t

δ:

Condensate film thickness (m)

δ+ :

Dimensionless film thickness δu *l

ϕ:

Shear parameter, \(C\frac{{\rho _{{\text{v}}} }}{{\rho _{{\text{l}}} }}{\left( {\frac{{\nu _{{\text{l}}} }}{{\nu _{{\text{v}}} }}} \right)}^{{ - 0.2}} Gr^{{1.4/6}} \)

ν:

Kinematic viscosity

ɛ m :

Eddy diffusivity for momentum

ρ:

Density (kg/m3)

τ:

Shear stress

τδ :

Interfacial vapor shear stress

s:

Saturation

v:

Vapor

l:

Liquid

w:

Cone wall

δ:

Vapor-liquid interface

M :

Power of potential flow

References

  1. Nusselt W (1916) Die Oberflachen Kondensation des wasserdampfes. Zeitschrift des Vereines Deutscher Ingenieure 60:541–546

    Google Scholar 

  2. Sparow EM, Gree JL (1959) A boundary layer treatment of laminar-film condensation. ASME J Heat Transfer Ser C 81:13–18

    Google Scholar 

  3. Koh JCY, Sparrow EM, Hartnett JP (1961) The two phase boundary layer in laminar film condensation. Int J Heat Mass Transfer 2:69–82

    Article  Google Scholar 

  4. Dhir VK, Lienhard JH (1973) Similar solutions for laminar film condensation with variable gravity or body shape. ASME J Heat Transfer Ser C 95:97–100

    Google Scholar 

  5. Cess RD (1960) Laminar film condensation on a flat plate in the absence of a body force. Zeitschrift fur Angewandte und Physik 11:426–433

    Article  MATH  MathSciNet  Google Scholar 

  6. Koh JCY (1962) Film condensation in a forced-convection boundary-layer flow. Int J Heat Mass Transfer 5:941–954

    Article  Google Scholar 

  7. Shekriladze IG, Gomelauri VI (1966) Theoretical study of laminar film condensation of flowing vapor. Int J Heat Mass Transfer 9:581–591

    Article  Google Scholar 

  8. Chung PM (1961) Film condensation with and without body forced in boundary layer flow of vapor over a flat plate. NASA Technical Note D790

  9. Jacobs HR (1966) An integral treatment of combine body force and forced convection in laminar film condensation. Int J Heat Mass Transfer 9:639–647

    Article  Google Scholar 

  10. Hason MM, Moutsoglu A (1983) Laminar film condensation in wedge flows. ASME-JSME Thermal Eng Joint Conf 3:277–283

    Google Scholar 

  11. Kumari M, Pop I, Nath G (1984) Film condensation along a frustum of a cone in a porous medium. Int J Heat Mass Transfer 27:2155–2157

    Article  MATH  Google Scholar 

  12. Jacobi Anthony M (1992) Filmwise condensation from a flowing vapor onto isothermal asisymmetric bodies. J Thermophys Heat Transfer 6:321–325

    Article  Google Scholar 

  13. Kinoshita E, Uehara H (1995) Turbulent film condensation of binary mixture on a vertical plate. ASME/JSME Thermal Eng Joint Conf 2:367–373

    Google Scholar 

  14. Uehara H, Kinoshita E, Matsuda S (1995) Theoretical study on turbulent film condensation on a vertical plate. ASME/JSME Thermal Eng Joint Conf 2:391–397

    Google Scholar 

  15. Michael AG, Rose JW, Daniels LC (1989) Forced convection condensation on a horizontal tube-experiments with vertical downflow of steam. ASME J Heat Transfer 111:792–797

    Article  Google Scholar 

  16. Sarma PK, Vijayalakshmi B, Mayinger F (1998) Turbulent film condensation on a horizontal tube with external flow of pure vapors. Int J Heat Mass Transfer 41:537–545

    Article  MATH  Google Scholar 

  17. Bejan A (1995) Convection heat transfer. Wiley, Canad

    Google Scholar 

  18. Hess John L, Faulkner S (1965) Accurate values of the exponent governing potential flow about Semi-infinite Cones. AIAA J 3:767

    Google Scholar 

  19. Van Driest, ER (1956) On turbulent flow near a wall. J Aerosol Sci 23:1107–1010

    Google Scholar 

  20. Kato H, Shiwaki NN, Hirota M (1968) On the turbulent heat transfer by free convection from a vertical plate. Int Heat Mass Transfer 11:1117–1125

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support provided for this project by the National Science Council of the Republic of China under contract no. NSC-94-2212-E-165-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cha’o-Kuang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, HP., Chen, CK. Turbulent film condensation on an isothermal cone surface. Heat Mass Transfer 42, 378–386 (2006). https://doi.org/10.1007/s00231-005-0638-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0638-5

Keywords

Navigation