Advertisement

Heat and Mass Transfer

, Volume 42, Issue 5, pp 364–369 | Cite as

The derivation of thermal relaxation time between two-phase bubbly flow

  • S. A. Mohammadein
Original

Abstract

Thermal relaxation time constant is derived analytically for the relaxed model with unequal phase-temperatures of a vapour bubble at saturation temperature and a non-steady temperature field around the growing vapour bubble. The energy and state equation are solved between two finite boundary conditions. Thermal relaxation time perform a good agreement with Mohammadein (in Doctoral thesis, PAN, Gdansk, 1994) and Moby Dick experiment in terms of non-equilibrium homogeneous model (Bilicki et al. in Proc R Soc Lond A428:379–397, 1990) for lower values of initial void fraction. Thermal relaxation is affected by Jacob number, superheating, initial bubble radius and thermal diffusivity.

Keywords

Average temperature of the superheated liquid Extended Scriven theory Thermal relaxation time Moby Dick experiment 

Notes

Acknowledgements

The author is grateful to the reviewers for their useful comments

References

  1. 1.
    Anderson DA, Tannehill JC, Pietcher RH (1984) Computational fluid mechanics and transfer. Hemisphere, WashingtonzbMATHGoogle Scholar
  2. 2.
    Bauer EG, Houdayer GR, Sureau HM (1976) A non-equilibrium axial flow model and application to loss-of-coolant accident analysis: the CLYSTERE system code, “paper presented at the OECD/NEA specialists” meeting on Transient Two-Phase Flow, Toronto, CanadaGoogle Scholar
  3. 3.
    Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proc R Soc Lond A 428:379–397zbMATHGoogle Scholar
  4. 4.
    Bilicki Z, Kestin J, Pratt MM (1990) A reinterpretation of the results of the Moby Dick experiment in terms of the non equilibrium model. J Fluid Eng Trans ASME 112:212–217CrossRefGoogle Scholar
  5. 5.
    Bilicki Z, Kwidzinski R, Mohammadein SA (1996) An estimation of a relaxation time of heat and mass exchange in the liquid–vapour bubble flow. Int J Heat Mass Transfer 39(4):753–759zbMATHCrossRefGoogle Scholar
  6. 6.
    Hsieh DY (1965) Some analytical aspects of bubble dynamics. J Basic Eng ASME D87:991–1005Google Scholar
  7. 7.
    Madejski J, Staiszewski B (1971) Heat transfer in boiling and two-phase flow, vol l (in Polish). Osrodek Informacji o Energii Jadrowej, WarsawGoogle Scholar
  8. 8.
    Mohammadein SA (1994) Evaluation of characteristic time in the relaxation model for one-component bubble-flow. Doctoral Thesis, PAN, GdanskGoogle Scholar
  9. 9.
    Mohammadein SA, Sh A. Gouda temperature distribution in a mixture surrounding a growing vapour bubble. J Heat Mass Transfer. DOI 10.1007/s00231-004-0585-6Google Scholar
  10. 10.
    Prosperetti A, Plesset MS (1978) Vapour-bubble growth in a superheated liquid. J Fluid Mech 85:349–368CrossRefGoogle Scholar
  11. 11.
    Reocreux M (1974) Contribution a l’etude des debits critiques en ecoulement diphasique eau vapeur. These, Univ. Scientifique et Medicale, Grenoble, FranceGoogle Scholar
  12. 12.
    Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10:1–13CrossRefGoogle Scholar
  13. 13.
    Selmer - Olsen S (1991) Etude theoretique et experimentale des ecoulements diphasiques en tuyere convergente-divergence. These, de l’Institut National Polytechnique dGrenoble, FranceGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. A. Mohammadein
    • 1
  1. 1.Mathematics Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations