Advertisement

Heat and Mass Transfer

, Volume 41, Issue 6, pp 503–509 | Cite as

Determination of pore diameter from rejection measurements with a mixture of oligosaccharides

  • Heriberto Espinoza-GómezEmail author
  • Shui Wai Lin
  • Eduardo Rogel-Hernández
Original

Abstract

This paper present a method to determine pore diameters and effective transport through membranes using a mixture of oligosaccharides. The results are compared with the Maxwell–Stefan equations. The partition coefficients of the solutes are a function of the pore diameter according to the Ferry equation. Thus, with the pore diameter as the only unknown parameter, rejection is described and the pore diameter is obtained by a Marquardt–Levenberg optimization procedure.

Keywords

Friction Coefficient Pore Diameter Concentration Polarization Hydraulic Permeability Molar Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

B0

Membrane permeability (m2)

C

Concentration (mol m−3)

D

Diffusion coefficient (m2 s−1)

F

Force on a component (N)

I

Ionic strength (mol m−3)

K

Partition constant

Na

Avagadro number

Mw

Molecular weight (g mol−1)

N

Molar flux (mol m−2 s−1)

P

Pressure (Pa)

r

Radius (m)

R

Gas constant (J mol−1 K−1)

T

Temperature (K)

u

Diffusive volume flux (m s−1)

V

Partial molar volume (m3 mol−1)

ν

Viscous volume flux (m s−1)

w

Overall volume flux (m s−1)

x

Mole fraction in boundary layer

y

Mole fraction in membrane

z

Thickness of the membrane (m)

ɛ

Porosity of membrane

η

Viscosity (Pa s)

λ

Ratio of solute to pore radius

μ

Chemical potential (J mol−1)

Φ

Electrical potential (V)

P

Osmotic pressure jump at entrance or exit of membrane (Pa)

τ

Tortuosity of membrane

ζ

Friction coefficient (J mol−1 m−2 s−1)

Subscripts

f

Fluid

i, k

Component index

m

Membrane

p

Pore

s

Sphere

t

Tube

tot

Total

w

Water

Unbound fluid

Superscripts

p

Permeate

References

  1. 1.
    Aimar P, Meireles M, Sanchez V (1990) A contribution to the translation of retention curves into pore size distributions for sieving membranes. J Membr Sci 54:321–338CrossRefGoogle Scholar
  2. 2.
    Bowen WR, Mohammad AW, Hilal N (1997) Characterisation of nanofiltration membranes for predictive purposes—use of salts uncharged solutes and atomic force microscopy. J Membr Sci 126:91–105CrossRefGoogle Scholar
  3. 3.
    Coster HGL, Kim KJ, Dahlan K, Smith JR, Fell CJD (1992) Characterization of ultrafiltration membranes by impedance spectroscopy. I. Determination of the separate electrical parameters and porosity of the skin and sublayers. J Membr Sci 66:19–26CrossRefGoogle Scholar
  4. 4.
    Ferry JD(1936) Statistical evaluation of sieve constants in ultrafiltration. J Gen Physiol 20:95–104CrossRefGoogle Scholar
  5. 5.
    Hanemaaijer JH, Robbertsen T, van den Boomgaard TH, Olieman C, Both C, Schmidt P (1988) Characterization of clean and fouled ultrafiltration membranes. Desalination 68:93–108CrossRefGoogle Scholar
  6. 6.
    Krishna R (1987) A unified theory of separation processes based on irreversible thermodynamics. Chem Eng Commun 59:33–64Google Scholar
  7. 7.
    Lali AM, Khare AS, Joshi JB (1989) Behaviour of solid particles in viscous non-newtonian solutions: settling velocity, wall effects and bed expansion in solid liquid fluidized beds. Powder Technol 57:39–50CrossRefGoogle Scholar
  8. 8.
    Lightfoot EN (1974) Transport phenomena of living systems. Wiley, New YorkGoogle Scholar
  9. 9.
    Nakao S, Kimura S (1981) Analysis of solutes rejection in ultrafiltration. J Chem Eng Jpn 14:32–38Google Scholar
  10. 10.
    Noordman TR, Vonk P, Damen VHJT, Brul R, Schaafsma SH, de Haas M, Wesselingh JA (1997) Rejection of phosphates by a ZrO2 ultrafiltration membrane. J Membr Sci 135:203–210CrossRefGoogle Scholar
  11. 11.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1987) Numerical recipes. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    van Riel J, Olieman C (1991) Selectivity control in the anion-exchange chromatographic determination of saccharides in dairy products using pulsed amperometric detection. Carbohydrate Res 215:39–46CrossRefGoogle Scholar
  13. 13.
    Vonk P, Noordman TR, Schippers D, Tilstra B, Wesselingh JA (1997) Ultrafiltration of a polymer/electrolyte mixture. J Membr Sci 130:249–263CrossRefGoogle Scholar
  14. 14.
    Wang X-L, Tsuru T, Togoh M, Nakao S-I, Kimura S (1995) Evaluation of pore structure and electrical properties of nanofiltration membranes. J Chem Eng Jpn 28:186–192Google Scholar
  15. 15.
    Wesselingh JA, Krishna R (1990) Mass transfer. Ellis Horwood, LondonGoogle Scholar
  16. 16.
    Cuperus FP (1990) Characterization of ultrafiltration membranes. Pore structure ant top layer thickness. PhD thesis, University of TwenteGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Heriberto Espinoza-Gómez
    • 1
    Email author
  • Shui Wai Lin
    • 2
  • Eduardo Rogel-Hernández
    • 1
  1. 1.Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma de Baja California-TijuanaTijuanaMéxico
  2. 2.Centro de Graduados e Investigación del Instituto Tecnológico de TijuanaTijuanaMéxico

Personalised recommendations