Skip to main content
Log in

Tuning a space–time scalable PI controller using thermal parameters

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper outlines the successful empirical design and validation of a space–time PI controller based on study of the controlled variable output as function of time and space. The developed control was implemented on two heat exchanger systems (falling film evaporator and milk pasteurizer). The strategy required adding a new term over the classical PI controller, such that a new parameter should be tuned. Measurements made on commercial installations have confirmed the validity of the new controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gay DH, Ray WR (1995) Identification and control of distributed parameter systems by means of singular value decomposition. Chem Eng Sci 50(10):1519

    Article  CAS  Google Scholar 

  2. Chen CC, Chang PC (1992) Accelerated disturbance damping of an unknown distributed system by nonlinear feedback. AIChE J 38(9):1461

    Article  CAS  Google Scholar 

  3. Krisher K, Rico-Martinez R, Kevrekidis IG, Rotermund HH, Hudson JL (1993) Model identification of a spatiotemporally varying catalytic reaction. AIChE J 39:89

    Article  Google Scholar 

  4. Shvartsman SY, Kevrekidis IG (1998) Nonlinear model reduction for control of distributed systems: a computer assisted study. AIChE J 44:1579

    Article  CAS  Google Scholar 

  5. Hanczyc EM, Palazoglu A (1995) Sliding mode control of nonlinear distributed parameter chemical processes. I EC Res 34:455

    Google Scholar 

  6. Christofides PD, Daoutidis P (1997) Nonlinear control of diffusion convection-reaction processes. Comput Chem Eng 20:26

    Google Scholar 

  7. Diaz G, Sen M, Yang KT, McClain RL (1999) Simulation of heat exchanger performance by artificial neural networks. HVAC R Res J 3:195–208

    Google Scholar 

  8. Sen M, Yang KT (2000) Applications of artificial neural networks and genetic algorithms in thermal engineering. In: Kreith F (ed) The CRC handbook of thermal engineering, Sect. 4.24, pp 620–661

  9. Pacheco-Vega A, Sen M, Yang KT, McClain RL (2001) Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data. Int J Heat Mass Transfer 44:763–770

    Article  Google Scholar 

  10. Pacheco-Vega A, Diaz G, Sen M, Yang KT, McClain RL (2001) Heat rate predictions in humid air-water heat exchangers using correlations and neural networks. ASME J Heat Transfer 123(2):348–354

    Article  Google Scholar 

  11. Diaz G, Sen M, Yang KT, McClain RL (2001) Adaptive neurocontrol of heat exchangers. ASME J Heat Transfer 123(3):417–612

    Article  Google Scholar 

  12. AlDuwaish HN, Karim MN (1996) New methodology for identification and control of plants with static input or output nonlinearities. Comput Chem Eng 20(Suppl B):993–998

    Article  Google Scholar 

  13. Matko D, Kavsek-Biasizzo K, Kocijan J (1998) Neuro-fuzzy model-based control. J Intell Robotic Syst 2–4:249–265

    Article  Google Scholar 

  14. Riverol C, Napolitano V (2000) Use of neural networks as a tuning method for an adaptive PID—application in a heat exchanger. Chem Eng Res Des 78(A8):1115–1119

    Article  CAS  Google Scholar 

  15. Quek C, Wahab A (2000) Real-time integrated process supervision. Eng Appl Artif Intell 13(6):645–658

    Article  Google Scholar 

  16. Ray W (1978) Some recent applications of distributed parameter system theory—a survey. Automatica 14:281–299

    Article  Google Scholar 

  17. Lasiecka I (1995) Control of systems governed by partial differential equations. A historical perspective. In: Proceedings of the IEEE conference on decision and control. New Orleans, pp 2792–2884

  18. Armaou A, Christofides P (2002) Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem Eng Sci 57:5083–5114

    Article  CAS  Google Scholar 

  19. Brockett R (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhauser, Germany, pp 181–191

  20. Brotherton F (1999) Falling film evaporation at high vapour velocities. In: Proceedings of the 6th UK national conference of heat transfer. pp 379–384

  21. Zufall C, Wackerbauer K (2000) Process engineering parameters for the desalcoholisation of beer by means of falling film evaporation. Monatsschrift fur Brauwissenschaft 53:124–137

    CAS  Google Scholar 

  22. Edan Y, Grispen P, Kahn H (1992) Fuzzy logic applications in dairy industries. In: International winter meeting of ASAE, Nashville, Tennessee, pp 1–15

Download references

Acknowledgements

We gratefully acknowledge the support of Project Engineering Department of J.C. Engineering for this and related projects in the pilot plant, also thanks Mr. C. Di Sanctis and the anonymous referees for the valuables comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Riverol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riverol, C., Pilipovik, M.V. Tuning a space–time scalable PI controller using thermal parameters. Heat Mass Transfer 41, 465–470 (2005). https://doi.org/10.1007/s00231-004-0562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0562-0

Keywords

Navigation