Skip to main content
Log in

Dolbeault-type complexes on \(G_2\)- and \(\mathrm {Spin}(7)\)-manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

There are three types of Dolbeault complexes arising from representations of holonomy group on a Riemannian manifold, two of which are dual to each other. Such a complex is elliptic if and only if its generator satisfies an algebraic condition. We list all Dolbeault complexes on compact \(G_2\)- and \(\mathrm {Spin}(7)\)-manifolds. Each cohomology group can be described by harmonic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math. 2(86), 374–407 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borel, A.: Some remarks about Lie groups transitive on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouche, T.: La cohomologie coeffective d’une variété symplectique. Bull. Sci. Math. 114(2), 115–122 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. (2) 126(3), 525–576 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern, S.S.: On a generalization of Kähler geometry. In: Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, pp. 103–121. Princeton University Press, Princeton (1957)

  7. Chern, S.S.: The geometry of \(G\)-structures. Bull. Am. Math. Soc. 72, 167–219 (1966)

    Article  MATH  Google Scholar 

  8. Dadok, J., Harvey, R.: Calibrations and spinors. Acta Math. 170(1), 83–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eastwood, M.: Extensions of the coeffective complex. Ill. J. Math. 57(2), 373–381 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Fernández, M., Ugarte, L.: Dolbeault cohomology for \(G_2\)-manifolds. Geom. Dedicata 70(1), 57–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández, M., Ugarte, L.: A differential complex for locally conformal calibrated \(G_2\)-manifolds. Ill. J. Math. 44(2), 363–390 (2000)

    MATH  Google Scholar 

  12. Joyce, D.D.: Compact \(8\)-manifolds with holonomy \({\rm Spin}(7)\). Invent. Math. 123(3), 507–552 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyce, D.D.: Compact Riemannian \(7\)-manifolds with holonomy \(G_2\). I, II. J. Differ. Geom. 43(2):291–328, 329–375 (1996)

  14. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs, Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  15. Joyce, D.D.: Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts in Mathematics, vol. 12. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  16. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. 2(44), 454–470 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reyes Carrión, R.: A generalization of the notion of instanton. Differ. Geom. Appl. 8(1), 1–20 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Salamon, S.: Riemannian Geometry and Holonomy Groups. Pitman Research Notes in Mathematics Series, vol. 201. Longman Scientific & Technical, Harlow; co published in the United States with John Wiley & Sons, Inc., New York (1989)

  20. Ugarte, L.: Coeffective numbers of Riemannian 8-manifolds with holonomy in Spin(7). Ann. Global Anal. Geom. 19(1), 35–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, M.Y.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Widdows, D.: A Dolbeault-type double complex on quaternionic manifolds. Asian J. Math. 6(2), 253–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Jianwei, Huo, Xinxia: Spinor spaces of Clifford algebras. Adv. Appl. Clifford Algebras 12(1), 21–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank D.D. Joyce for explanations about the dirac operator on \(\mathrm {Spin}(7)\)-manifold. The author is grateful to Prof. J. Zhou for many useful suggestions. The author is also indebted to H. J. Fan for the guidance over the past years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Dolbeault-type complexes on \(G_2\)- and \(\mathrm {Spin}(7)\)-manifolds. manuscripta math. 172, 685–703 (2023). https://doi.org/10.1007/s00229-022-01433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01433-8

Mathematics Subject Classification

Navigation