Skip to main content
Log in

Sharp Gaussian upper bounds for Schrödinger heat kernel on gradient shrinking Ricci solitons

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

On gradient shrinking Ricci solitons, we observe that the study of Schrödinger heat kernel seems to be more natural than the classical heat kernel. In this paper we derive sharp Gaussian upper bounds for the Schrödinger heat kernel on complete gradient shrinking Ricci solitons. As applications, we prove sharp upper bounds for the Green’s function of the Schrödinger operator. We also prove sharp lower bounds for eigenvalues of the Schrödinger operator. These sharp cases are all achieved at Euclidean Gaussian shrinking Ricci solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Hamilton, R.: The Formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, H.D.: Recent progress on Ricci solitons. Recent advances in geometric analysis. In: Lee, Y.I., Lin, C.S., Tsui, M.P. (eds.) Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–8. International Press, Somerville (2010)

    Google Scholar 

  3. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002), arXiv:math.DG/0211159

  4. Perelman, G.: Ricci flow with surgery on three-manifolds (2003), arXiv:math.DG/0303109

  5. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003), arXiv:math.DG/0307245

  6. Akutagawa, K., Ishida, M., LeBrun, C.: Perelman’s invariant, Ricci flow, and the Yamabe invariants of smooth manifolds. Arch. Math. 88, 71–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, Y., Wang, B.: Heat kernel on Ricci shrinkers. Calc. Var. PDEs 59, 1–84 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrillo, J., Ni, L.: Sharp logarithmic Sobolev inequalities on gradient solitons and applications. Commun. Anal. Geom. 17, 721–753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, S.-Y., Li, P., Yau, S.-T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103, 1021–1063 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  12. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds (Russian). Math. Sb. 182, 55–87 (1991)

    MATH  Google Scholar 

  13. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 1992(2), 27–38 (1992)

    Article  MATH  Google Scholar 

  14. Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. J. Anal. Math. 58, 99–119 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, J.-Y., Wu, P.: Heat kernel on smooth metric measure spaces and applications. Math. Ann. 365, 309–344 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carron, G.: Geometric inequalities for manifolds with Ricci curvature in the Kato class. Ann. Inst. Fourier (Grenoble) 69, 3095–3167 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  18. Davies, E.B., Simon, B.: \(L^p\) Norms of non-critical Schrödinger semigroups. J. Funct. Anal. 102, 95–115 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davies, E.B., Simon, B.: Ultracontractivity and heat kernels for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigor’yan, A.: Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pinchover, Y.: Large time behavior of the heat kernel. J. Funct. Anal. 206, 191–209 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Q.S.: An optimal parabolic estimate and its applications in prescribing scalar curvature on some open manifolds with \(\rm Ricci \ge 0\). Math. Ann. 316, 703–731 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q.S.: Large time behavior of Schrödinger heat kernels and applications. Commun. Math. Phys. 210, 371–398 (2000)

    Article  MATH  Google Scholar 

  25. Zhang, Q.S.: Global bounds of Schrödinger heat kernels with negative potentials. J. Funct. Anal. 182, 344–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Q.S.: A sharp comparison result concerning Schrödinger heat kernels. Bull. Lond. Math. Soc. 35, 461–472 (2003)

    Article  MATH  Google Scholar 

  27. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, P., Yau, S.-T.: On the Schrodinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part III: Geometric-analytic aspects. Mathematical Surveys and Monographs, vol. 163, p. 517. American Mathematical Society, Providence, RI, (2010)

  31. Chavel, I.: Eigenvalues in Riemannian geometry. In: Randol, B (ed.) With an appendix by Jozef Dodziuk. Pure and Applied Mathematics, vol. 115, p. 362. Academic Press, Inc., Orlando, FL (1984)

  32. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 363–382 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part IV: Long-time solutions and related topics. Mathematical Surveys and Monographs, vol. 206, p. 374. American Mathematical Society, Providence, RI, (2015)

  34. Haslhofer, R., Muller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21, 1091–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow, and the Poincaré Conjecture. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  36. Varopoulos, N.: Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63, 240–260 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, P.: Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  38. Tamanini, L.: From Harnack inequality to heat kernel estimates on metric measure spaces and applications (2019), arXiv:1907.07163

  39. Malgrange, M.: Existence et approximation des solutions der équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  40. Varopoulos, N.: The Poisson kernel on positively curved manifolds. J. Funct. Anal. 44, 359–380 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Qi S. Zhang for helpful suggestions. The author also thanks the referee for making valuable comments and suggestions and pointing out many errors which helped to improve the presentation of this work. This work was partially supported by NSFS (17ZR1412800) and NSFC (11671141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yong Wu.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JY. Sharp Gaussian upper bounds for Schrödinger heat kernel on gradient shrinking Ricci solitons. manuscripta math. 172, 1109–1132 (2023). https://doi.org/10.1007/s00229-022-01431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01431-w

Mathematics Subject Classification

Navigation