Skip to main content
Log in

Expectations, concave transforms, chow weights and Roth’s theorem for varieties

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We present a new perspective, which is at the intersection of K-stability and Diophantine arithmetic geometry. It builds on work of Boucksom and Chen (Compos Math 147(4):1205–1229, 2011), Boucksom et al. (Math Ann 361(3–4):811–834, 2015), Boucksom et al. (Ann Inst Fourier (Grenoble) 67(2):743–841, 2017), Codogni and Patakfalvi (Invent Math 223(3):811–894, 2021), Fujita (Amer J Math 140(2):391–414, 2018), Fujita (J reine angew Math 751:309–338, 2019), Li (Duke Math J 166(16):3147–3218, 2017), Ferretti (Compos Math 121(3):247–262, 2000), Ferretti (Duke Math J 118(3): 493–522, 2003), McKinnon and Roth (Invent Math 200(2): 513–583, 2015), Ru and Vojta (Amer J Math 142(3):957–991, 2020), Ru and Wang (Algebra Number Theory 11(10): 2323–2337, 2017), Ru and Wang (Int J Number Theory 18(1):61–74, 2022), Heier and Levin (Amer J Math 143(1): 213–226, 2021) and our related works (including Grieve (Michigan Math J 67(2):371–404, 2018), Grieve (Houston J Math 44(4):1181–1202, 2018), Grieve (Asian J Math 24(6):995–1005, 2020), Grieve (Acta Arith 195(4):415–428, 2020), Grieve (Res Number Theory 7(1):1, 14, 2021) and Grieve (C R Math Acad Sci Soc R Can 44(1):16–32, 2022)). Our main results may be described via the expectations of the Duistermaat-Heckman measures. For example, we prove that the expected orders of vanishing for very ample linear series along subvarieties may be calculated via the theory of Chow weights and Okounkov bodies. This result provides a novel unified viewpoint to the existing works that surround these topics. It expands on work of Mumford (Enseignement Math (2) 23(1-2):39–110, 1977), Odaka (Ann of Math (2) 177(2):645–661, 2013) and Fujita (Amer J Math 140(2):391–414, 2018). Moreover, it has applications for Diophantine approximation and K-stability. As one result of this flavour, we define a concept of uniform arithmetic \(\mathrm {K}\)-stability for Kawamata log terminal pairs. We then establish a form of K. F.  Roth’s celebrated approximation theorem for certain collections of divisorial valuations which fail to be uniformly arithmetically \(\mathrm {K}\)-stable. This result builds on the Roth type theorems of McKinnon and Roth (Invent Math 200(2):513–583, 2015). Moreover, it complements the concept of arithmetic canonical boundedness, in the sense of McKinnon and Satriano (Trans Amer Math Soc 374(5):3557–3577, 2021), in addition to our results that establish instances of Vojta’s Main Conjecture for \({\mathbb {Q}}\)-Fano varieties Grieve (Asian J Math 24(6):995–1005, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Autissier, P.: Sur la non-densité des points entiers. Duke Math. J. 158(1), 13–27 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Blum, H., Jonsson, M.: Thresholds, valuations, and \({{\rm K}}\)-stability. Adv. Math. 365, 107062, 57 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Bombieri, E., Gubler, W.: Heights in Diophantine geometry. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Boucksom, S., Chen, H.: Okounkov bodies of filtered linear series. Compos. Math. 147(4), 1205–1229 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform \(\rm K \)-stability, Duistermaat-Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67(2), 743–841 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Boucksom, S., Küronya, A., Maclean, C., Szemberg, T.: Vanishing sequences and Okounkov bodies. Math. Ann. 361(3–4), 811–834 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Codogni, G., Patakfalvi, Z.: Positivity of the CM line bundle for families of K-stable klt Fano varieties. Invent. Math. 223(3), 811–894 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Dervan, R., Legendre, E.: Valuative stability of polarised varieties, Math. Ann. (To appear)

  9. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62(2), 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Donaldson, S.K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Ein, L., Lazarsfeld, R., Mustaţǎ, M., Nakamaye, M., Popa, M.: Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1(2), Special Issue: In memory of Armand Borel. Part 1, 379–403 (2005)

  12. Ein, L., Lazarsfeld, R., Mustaţǎ, M., Nakamaye, M., Popa, M.: Restricted volumes and base loci of linear series. Amer. J. Math. 131(3), 607–651 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Evertse, J.-H., Ferretti, R. G.: Diophantine inequalities on projective varieties, Int. Math. Res. Not. (25):1295–1330 (2002)

  14. Faltings, G., Wüstholz, G.: Diophantine approximations on projective spaces. Invent. Math. 116(1–3), 109–138 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Ferretti, R.G.: Mumford’s degree of contact and diophantine approximations. Compos. Math. 121(3), 247–262 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Ferretti, R.G.: Diophantine approximations and toric deformations. Duke Math. J. 118(3), 493–522 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Fujita, K.: On \(\rm K \)-stability and the volume functions of \(\mathbb{Q} \)-Fano varieties. Proc. Lond. Math. Soc. (3) 113(5), 541–582 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Fujita, K.: Examples of K-unstable Fano manifolds with the picard number 1. Proc. Edinb. Math. Soc. (2) 60(4), 881–891 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Fujita, K.: Optimal bounds for the volumes of Kähler-Einstein Fano manifolds. Amer. J. Math. 140(2), 391–414 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Fujita, K.: A valuative criterion for uniform \(\rm K \)-stability of \({\mathbb{Q} }\)-Fano varieties. J. Reine Angew. Math. 751, 309–338 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Fujita, K., Odaka, Y.: On the K-stability of Fano varieties and anticanonical divisors. Tohoku Math. J. (2) 70(4), 511–521 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Grieve, N.: Diophantine approximation constants for varieties over function fields. Michigan Math. J. 67(2), 371–404 (2018)

  23. Grieve, N.: On arithmetic general theorems for polarized varieties. Houston J. Math. 44(4), 1181–1202 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Grieve, N.: Divisorial instability and Vojta’s main conjecture for \({\mathbb{Q} }\)-Fano varieties. Asian J. Math. 24(6), 995–1005 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Grieve, N.: Generalized GCD for Toric Fano Varieties. Acta Arith 195(4), 415–428 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Grieve, N.: On arithmetic inequalities for points of bounded degree. Res. Number Theory 7(1), 1, 14 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Grieve, N.: On Duistermaat-Heckman measure for filtered linear series. C. R. Math. Acad. Sci. Soc. R. Can. 44(1), 16–32 (2022)

    MathSciNet  Google Scholar 

  28. Grieve, N.: Vertices of the Harder and Narasimhan polygons and the Laws of Large Numbers, Canad. Math. Bull. (To appear)

  29. He, Y., Ru, M.: The stability threshold and Diophantine approximation. Proc. Amer. Math. Soc. Ser. B 9, 241–253 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Heier, G., Levin, A.: A generalized Schmidt subspace theorem for closed subschemes. Amer. J. Math. 143(1), 213–226 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2) 176(2), 925–978 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  33. Lazarsfeld, R.: Positivity in algebraic geometry I. Springer-Verlag, Berlin (2004)

    MATH  Google Scholar 

  34. Lazarsfeld, R., Mustaţǎ, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 783–835 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)

    MathSciNet  MATH  Google Scholar 

  36. McKinnon, D.: A conjecture on rational approximations to rational points. J. Algebraic Geom. 16(2), 257–303 (2007)

    MathSciNet  MATH  Google Scholar 

  37. McKinnon, D., Roth, M.: Seshadri constants, diophantine approximation, and Roth’s theorem for arbitrary varieties. Invent. Math. 200(2), 513–583 (2015)

    MathSciNet  MATH  Google Scholar 

  38. McKinnon, D., Satriano, M.: Approximating rational points on toric varieties. Trans. Amer. Math. Soc. 374(5), 3557–3577 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Morrison, I.: Projective stability of ruled surfaces. Invent. Math. 56(3), 269–304 (1980)

    MathSciNet  MATH  Google Scholar 

  40. Mumford, D.: Stability of projective varieties. Enseignement Math. (2) 23(1–2), 39–110 (1977)

    MathSciNet  MATH  Google Scholar 

  41. Odaka, Y.: The GIT stability of polarized varieties via discrepancy. Ann. of Math. (2) 177(2), 645–661 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Ross, J., Thomas, R.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16(2), 201–255 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Ru, M., Vojta, P.: A birational Nevanlinna constant and its consequences. Amer. J. Math. 142(3), 957–991 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Ru, M., Vojta, P.: An Evertse-Ferretti Nevanlinna constant and its consequences. Monatsh. Math. 196(2), 305–334 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Ru, M., Wang, J.T.-Y.: A Subspace Theorem for Subvarieties. Algebra Number Theory 11(10), 2323–2337 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Ru, M., Wang, J.T.-Y.: The Ru-Vojta result for subvarieties. Int. J. Number Theory 18(1), 61–74 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Silverman, J.H.: Arithmetic Distance Functions and Height Functions in Diophantine Geometry. Math. Ann. 279(2), 193–216 (1987)

    MathSciNet  MATH  Google Scholar 

  48. Székelyhidi, G.: Filtrations and test-configurations. Math. Ann. 362(1–2), 451–484 (2015)

  49. Zhu, Z.: Higher codimensional alpha invariants and characterization of projective spaces. Internat. J. Math. 31(2), 2050012, 17 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work began while I was a postdoctoral fellow at the University of New Brunswick, Fredericton NB, where I was financially supported by an AARMS postdoctoral fellowship. It benefited from a visit to the Atlantic Algebra Centre, St. John’s NL, during March of 2017. Some later portions of this work were completed while I was a postdoctoral fellow at Michigan State University. They profited from visits to CIRGET, Montreal, during May of 2019, ICERM, Providence, during June of 2019, NCTS and Institute of Mathematics Academia Sinica, Taipei, during June of 2019, and the American Institute of Mathematics, San Jose, during January of 2020. Finally, I thank the Natural Sciences and Engineering Research Council of Canada for their support through my grants DGECR-2021-00218 and RGPIN-2021-03821 and colleagues and anonymous referees for their interest and helpful thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Grieve.

Ethics declarations

Statement about conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I thank the Natural Sciences and Engineering Research Council of Canada for their support through my grants DGECR-2021-00218 and RGPIN-2021-03821.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grieve, N. Expectations, concave transforms, chow weights and Roth’s theorem for varieties. manuscripta math. 172, 291–330 (2023). https://doi.org/10.1007/s00229-022-01417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01417-8

Mathematics Subject Classification

Navigation