Skip to main content
Log in

Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper we first prove the attainability of the following best Sobolev-Hardy constant on Carnot group

$$\begin{aligned} S_{\mu ,\alpha }:= \inf \limits _{u \in S^{1} ({\mathbb {G}})\setminus \{0\}} \frac{ \int _{{\mathbb {G}}} |\nabla _{{\mathbb {G}}}u|^2 dz- \mu \int _{{\mathbb {G}}} \frac{\psi ^{2}(z)|u|^2}{d(z)^{2}}dz}{(\int _{{\mathbb {G}}} \frac{\psi (z)^{\alpha }|u|^{2^*(\alpha )}}{d(z)^{\alpha }}dz)^\frac{2}{2^*(\alpha )}}, \end{aligned}$$

where \({\mathbb {G}}\) is a Carnot group, \(\nabla _{{\mathbb {G}}}u\) is the horizontal gradient associated with \(\varDelta _{{\mathbb {G}}}\), d is the natural gauge associated with the fundamental solution of \(-\varDelta _{{\mathbb {G}}}\) on \({\mathbb {G}}\), \(\psi \) is the geometrical function defined as \(\psi =|\nabla _{{\mathbb {G}}}d|\), \(0\le \alpha <2\), \(0\le \mu <\mu _{G}:=(\frac{Q-2}{2})^{2}\), \(2^*(\alpha )=\frac{2(Q-\alpha )}{Q-2}\) is the critical Sobolev-Hardy exponent and Q is the homogeneous dimension of \({\mathbb {G}}\). The attainability of the best constant \(S_{\mu ,\alpha }\) allows us to establish the existence of nontrivial weak solution to the following sub-elliptic equation and system involving the Hardy-type potentials and multiple critical nonlinearities

$$\begin{aligned} -\varDelta _{{\mathbb {G}}}u- \mu \frac{\psi (z)^{2}u}{d(z)^{2}}= {\frac{\psi (z)^{\alpha }|u|^{2^*(\alpha )-2}u}{d(z)^{\alpha }}}+ {\frac{\psi (z)^{\beta }|u|^{2^*(\beta )-2}u}{d(z)^{\beta }}}\quad \text {in}\,\,{\mathbb {G}}, \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned}&-\varDelta _{{\mathbb {G}}}u- \mu \frac{\psi (z)^{2}u}{d(z)^{2}}= {\frac{\psi (z)^{\alpha }|u|^{2^*(\alpha )-2}u}{d(z)^{\alpha }}}+ \frac{\lambda \, \eta }{\eta + \theta } {\frac{\psi (z)^{\alpha }|u|^{\eta -2}u|v|^{\theta }}{d(z)^{\alpha }}} \quad&\text {in}\,\,\,{\mathbb {G}},\\&-\varDelta _{{\mathbb {G}}}v- \mu \frac{\psi (z)^{2}v}{d(z)^{2}}= {\frac{\psi (z)^{\alpha }|v|^{2^*(\alpha )-2}v}{d(z)^{\alpha }}}+ \frac{\lambda \, \theta }{\eta + \theta } {\frac{\psi (z)^{\alpha }|u|^{\eta }|v|^{\theta -2}v}{d(z)^{\alpha }}} \quad&\text {in}\,\,\,{\mathbb {G}}, \end{aligned} \right. \end{aligned}$$

where \(\varDelta _{{\mathbb {G}}}\) is the sub-Laplacian operator on Carnot group \({\mathbb {G}}\), \(0\le \mu <\mu _{G}\), \(0\le \alpha ,\beta <2\), \(\eta \), \(\theta >1\) with \(\eta +\theta =2^*(\alpha )\) and \(\lambda >0\) is a parameter. The results are obtained by variational methods and local compactness of Palais-Smale sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Felli, V., Peral, I.: Existence and non-existence results for quasilinear elliptic equations involving the \(p\)-Laplacian. Boll. UMI 9B, 445–484 (2006)

    MATH  Google Scholar 

  2. Bony, J.M.: Principe du maximum, inégalité de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenobles 19, 277–304 (1969)

    Article  MATH  Google Scholar 

  3. Brezis, H., Marcus, M., Shafrir, I.: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171, 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordoni, S., Pucci, P.: Schrödinger-Hardy systems involving two Laplacian operators in the Heisenberg group. Bull. des Sci. Mathématiques 146, 50–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Diff. Equ. 205, 521–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, D., Kang, D.: Solutions of quasilinear elliptic problems involving a Sobolev exponent and multiple Hardy-type terms. J. Math. Anal. Appl. 333, 889–903 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Rocha, E.M.: Existence of solution of sub-elliptic equation on the Heisenberg group with critical growth and Double singularities. Opusc. Math. 33(2), 237–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Ambrosio, L.: Hardy inequalities related to Grushin-type operators. Proc. Am. Math. Soc. 132(3), 725–734 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Ambrosio, L.: Some Hardy inequalities on the Heisenberg group. Differ. Equ. 40(4), 552–564 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 451–486 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Demengel, F., Hebey, E.: On some nonlinear equations involving the \(p\)-Laplacian with critical Sobolev growth. Adv. Diff. Equ. 3, 533–574 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Dou, J., Niu, P.: Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators. Miskolc Math. Notes 8(1), 73–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franchi, B., Guitérrez, C.E., Wheeden, R.L.: Weight Sobolev-Poincaré inequalities for Grushin type operator. Comm. Partial Differ. Equ. 19(3–4), 523–604 (1994)

    Article  MATH  Google Scholar 

  14. Filippucci, R., Pucci, P., Robert, F.: On a \(p\)-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91, 156–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm. Partial Diff. Equ. 31, 469–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40(2), 313–356 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghoussoub, N., Moradifam, A.: Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, vol. 187. American Mathematical Society, Providence (2013)

  18. Ghoussoub, N., Robert, F.: Sobolev inequalities for the Hardy-Schrödinger operator: extremals and critical dimensions. Bull. Math. Sci. 6, 89–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghoussoub, R., Robert, F.: The effect of curvature on the best constant in the Hardy-Sobolev inequalities. Geom. Funct. Anal. 16(6), 1201–1245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghoussoub, R., Robert, F.: Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth. Int. Math.Res. Pap. IMRP, Article ID 21867, 1–85 (2006)

  21. Ghoussoub, N., Shakerian, S.: Borderline variational problems involving fractional Laplacians and critical singularities. Adv. Nonlinear Stud. 15, 527–555 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garofalo, N., Vassilev, D.: Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups. Math. Ann. 318(3), 453–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc. 352, 5703–5743 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Han, P.: Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal. 61, 735–758 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Y., Niu, P.: Hardy-Sobolev type inequalities on the H-type group. Manuscripta Math. 118, 235–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev inequality and the Quaternionic Contact Yamabe problem. World Scientific, Singapore (2011). https://doi.org/10.1142/7647

    Book  MATH  Google Scholar 

  27. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Amer. Math. Soc. 1, 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kang, K., Peng, S.: Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents. Israel J. Math. 143, 281–297 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, D., Peng, S.: Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential. Appl. Math. Lett. 18, 1094–1100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Rev. Matemática Iberoam. 1(1), 145–201 (1985)

    Article  MATH  Google Scholar 

  31. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Matemática Iberoam. 1(2), 45–121 (1985)

    Article  MATH  Google Scholar 

  32. Loiudice, A.: Local behavior of solutions to sunelliptic problems with Hardy potential on Carnot groups. Mediterr. J. Math. 15, 1–20 (2018). (Art. 81)

    Article  MathSciNet  MATH  Google Scholar 

  33. Loiudice, A.: Critical growth problems with singular nonlinearities on Carnot groups. Nonlinear Anal. 126, 415–436 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Loiudice, A.: Asymptotic estimates and nonexistence results for critical problems with Hardy term involving Grushin-type operators. Annali di Matematica 198, 1909–1930 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, J.: Equation with critical Sobolev-Hardy exponents. Int. J. Math. Math. Sci. 20, 3213–3223 (2005)

    Article  MATH  Google Scholar 

  36. Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality. Calc. Var. Partial Differ. Equ. 42, 563–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. In: Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 342, second, revised and argumented ed., Springer, Heidelberg, p. xxviii+866 (2011)

  38. Pucci, P., Servadei, R.: Existence, non-existence and regularity of radial ground states for \(p\)-Laplacian equations with singular weights. Ann. Inst. H. Poincare A.N.L. 25, 505–537 (2008)

    Article  MATH  Google Scholar 

  39. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston, Inc., Boston, MA (1996)

    Google Scholar 

  40. Yang, Q., Su, D., Kong, Y.: Improved Hardy inequalities for Grushin operators. J. Math. Anal. Appl. 424, 321–343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J., Yang, D.: Existence and asymptotic behavior of solution for a degenerate elliptic equation involving Grushin-type operator and critical Sobolev-Hardy exponents. Acta Mathematica Scientia 41(A), 997–1012 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, J., Yang, D.: Asymptotic properties of solution to Grushin-type operator problems with multi-singular potentials. J. Math. (PRC) 41(1), 79–87 (2021)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinguo Zhang.

Ethics declarations

Data Availability Statement

All data generated or analyzed during this study are included in this article.

Conflict of Interest Statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups. manuscripta math. 172, 1–29 (2023). https://doi.org/10.1007/s00229-022-01406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01406-x

Mathematics Subject Classification (2000)

Navigation