Skip to main content
Log in

Non-invariance of the Hasse principle with Brauer–Manin obstruction

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study the Hasse principle with Brauer–Manin obstruction with respect to extensions of number fields. We give a general construction (conditional on a conjecture of M. Stoll) to prove that the failure of Hasse principle explained by the Brauer–Manin obstruction is not always invariant. Then we illustrate this construction with an explicit unconditional example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colliot-Thélène, J.-L.: Zéro-cycles de degré 1 sur les solides de Poonen, Bull. Soc. Math. France, 138, 249–257 (2010) (French)

  2. Colliot-Thélène, J.-L., Pál, A., Skorobogatov, A.: Pathologies of the Brauer–Manin obstruction. Math. Z. 282, 799–817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grothendieck, A.: Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics, vol. 224. Springer, Berlin (1960)

    Google Scholar 

  4. Grothendieck, A.: Le groupe de Brauer III: Exemples et compléments. In: Dix exposés sur la cohomologie des schémas, Advanced Studies in Pure Mathematics, vol. 3, North-Holland, (French). pp. 88–188 (1968)

  5. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52. Springer, Berlin (1997)

    Google Scholar 

  7. Harpaz, Y., Skorobogatov, A.: Singular curves and the étale Brauer–Manin obstruction for surfaces. Ann. Sci. Éc. Norm. Supér. 47, 765–778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolyvagin, V.: Euler systems. In: The Grothendieck festschrift II, Progress in Mathematics, vol. 87, pp. 435–483. Birkhäuser. (1990)

  9. Kolyvagin, V.: On the Mordell-Weil and the Shafarevich-Tate group of modular elliptic curves. In: Proceedings of the international congress of mathematicians, Vol. I, pp. 429-436. Springer. (1991)

  10. Liang, Y.: Non-invariance of weak approximation properties under extension of the ground field, Michigan Math. J. (2018)

  11. Manin, Y.: Le groupe de Brauer-Grothendieck en géométrie diophantienne. In: Actes du Congrès International des Mathématiciens, Vol. 1, pp. 401-411. Gauthier-Villars, (French). (1971)

  12. Neukirch, J.: Algebraic number theory. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  13. Poonen, B.: Existence of rational points on smooth projective varieties. J. Eur. Math. Soc. 11, 529–543 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Poonen, B.: Insufficiency of the Brauer–Manin obstruction applied to étale covers. Ann. of Math. 171, 2157–2169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scharaschkin, V.: Local-global problems and the Brauer–Manin obstruction. University of Michigan, Thesis, Michigan (1999)

    MATH  Google Scholar 

  16. Selmer, E.S.: The Diophantine equation \(ax^3 + by^3 + cz^3 = 0\). Acta Math. 85, 203–362 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. Serre, J.-P.: A course in arithmetic, Graduate Texts in Mathematics, vol. 7. Springer, Berlin (1973)

    Book  Google Scholar 

  18. Serre, J.-P.: Local fields, Graduate Texts in Mathematics, vol. 67. Springer, Berlin (1979)

    Google Scholar 

  19. Silverman, J.: The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106. Springer, Berlin (2009)

    Book  Google Scholar 

  20. Skorobogatov, A.: Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144. Cambridge University Press, UK (2001)

    Book  MATH  Google Scholar 

  21. Skorobogatov, A.: Beyond the Manin obstruction. Invent. Math. 135, 399–424 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stein, W.: Sage for power users, https://www.sagemath.org/, (2012)

  23. Stoll, M.: Finite descent obstructions and rational points on curves. Algebr. Number. Theory. 1, 349–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank his thesis advisor Y. Liang for proposing the related problems, papers and many fruitful discussions. We would like to express our heartfelt thanks to the anonymous referees for their careful scrutiny and valuable suggestions. The author was partially supported by NSFC Grant No. 12071448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H. Non-invariance of the Hasse principle with Brauer–Manin obstruction. manuscripta math. 171, 457–471 (2023). https://doi.org/10.1007/s00229-022-01396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01396-w

Mathematics Subject Classification

Navigation