Skip to main content
Log in

Galois module structure of the units modulo \(p^m\) of cyclic extensions of degree \(p^n\)

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

A physical law must possess mathematical beauty.

Paul Dirac.

Abstract

Let p be prime, and \(n,m \in \mathbb {N}\). When K/F is a cyclic extension of degree \(p^n\), we determine the \(\mathbb {Z}/p^m\mathbb {Z}[\text {Gal}(K/F)]\)-module structure of \(K^\times /K^{\times p^m}\). With at most one exception, each indecomposable summand is cyclic and free over some quotient group of \(\text {Gal}(K/F)\). For fixed values of m and n, there are only finitely many possible isomorphism classes for the non-free indecomposable summand. These Galois modules act as parameterizing spaces for solutions to certain inverse Galois problems, and therefore this module computation provides insight into the structure of absolute Galois groups. More immediately, however, these results show that Galois cohomology is a context in which seemingly difficult module decompositions can practically be achieved: when \(m,n>1\) the modular representation theory allows for an infinite number of indecomposable summands (with no known classification of indecomposable types), and yet the main result of this paper provides a complete decomposition over an infinite family of modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. \({}^1\) no pun intended.

References

  1. Albert, A.: On cyclic fields. Trans. Am. Math. Soc. 37(3), 454–462 (1935)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, G.W.: Torsion points on Fermat Jacobians, roots of circular units and relative singular homology. Duke Math. J. 54(2), 501–561 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper. Abh. Math. Sem. Univ. Hamburg 5(1927), 85–99. Reprinted in Artin’s Collected Papers, edited by S. Lang and J. Tate, 258–272. New York: Springer-Verlag (1965). English transltion in Rosen M (ed.) Exposition by Emil Artin: A Selection, vol. 30 of History of Mathematics, 273–283. Providence, RI: American Mathematical Society (2006)

  4. Artin, E., Schreier, O.: Eine Kennzeichnung der reell abgeschlossenen Körper. Abh. Math. Sem. Univ. Hamburg 5(1927), 225–231. Reprinted in Artin’s Collected Papers, edited by S. Lang and J. Tate, 289–295. New York: Springer-Verlag (1965). English transltion in Rosen, M. (ed.) Exposition by Emil Artin: A Selection, vol.30 of History of Mathematics, 285–290. Providence, RI: American Mathematical Society (2006)

  5. Bary-Soroker, L., Jarden, M., Neftin, D.: On the Sylow subgroups of the absolute Galois group \({\rm Gal}(\mathbb{Q})\). Adv. Math. 23, 173–214 (2013)

    MATH  Google Scholar 

  6. Becker, E.: Euklidische Körper und euklidische Hüllen von Körpern. J. Reine Angew. Math. 268(269), 41–52 (1974)

    MathSciNet  MATH  Google Scholar 

  7. Benson, D., Lemire, N., Mináč, J., Swallow, J.: Detecting pro-\(p\) groups that are not absolute Galois groups. J. Reine Angew. Math. 613, 175–191 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Berg, J., Schultz, A.: \(p\)-groups have unbounded realization multiplicity. Proc. AMS 142(7), 2281–2290 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Bhandari, G., Lemire, N., Mináč, J., Swallow, J.: Galois module structure of Milnor \(K\)-theory in characteristic \(p\). N. Y. J. Math. 14, 215–224 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Bogomolov, F., Rovinsky, M., Tschinkel, Y.: Homomorphisms of multiplicative groups of fields preserving algebraic dependence. Eur. J. Math. 5(3), 656–685 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Bogomolov, F., Tschinkel, Y.: Commuting elements in Galois groups of function fields. In: Bogomolov, F., Katzarkov, L. (eds.) Motives, Polylogarithms and Hodge theory, pp. 75–120. International Press, Vienna (2002)

    Google Scholar 

  12. Bogomolov, F., Tschinkel, Y.: Reconstruction of function fields. Geom. Funct. Anal. 18(2), 400–462 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Bogomolov, F., Tschinkel, Y.: Milnor \(K_2\) and field homomorphisms. In: Cao, H.-D., Yau, S.-T. (eds.) Surveys in Differential Geometry XIII, pp. 223–244. International Press, Vienna (2009)

    Google Scholar 

  14. Bogomolov, F., Tschinkel, Y.: Reconstruction of higher-dimensional function fields. Mosc. Math. J. 11(2), 185–204 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Bogomolov, F., Tschinkel, Y.: Introduction to birational anabelian geometry. In: Caporaso, L., McKernan, J., Mustata, M., Popa, M. (eds.) Current Developments in Algebraic Geometry, vol. 59, pp. 17–63. MSRI Publications, Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  16. Bogomolov, F., Tschinkel, Y.: Galois theory and projective geometry. Commun. Pure Appl. Math. 66(9), 1335–1359 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Bogomolov, F., Tschinkel, Y.: Universal spaces for unramified Galois cohomology. In: Auel, A., Hassett, B., Varilly-Alvarado, A., Viray, B. (eds.) Brauer groups and obstruction problems: moduli spaces and arithmetic, pp. 57–86. Progress in Math. 320, Birkhäuser (2017)

  18. Bogomolov, F., Tschinkel, Y.: Noether’s problem and descent. ICCM Not. 6(2), 25–31 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Borevič, Z.I.: The multiplicative group of cyclic \(p\)-extensions of a local field. (Russian) Trudy Mat. Inst. Steklov 80(1965), 16–29. English translation in Proc. Steklov Inst. Math. No. 80 (1965): Algebraic number theory and representations, edited by D. K. Faddeev, 15–30. Providence, RI: American Mathematical Society, (1968)

  20. Bourbaki, N.: Algebra II: Chapters 4–7, Elements of Mathematics. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  21. Chebolu, S., Efrat, I., Mináč, J.: Quotients of absolute Galois groups which determine the entire Galois cohomology. Math. Ann. 352, 205–221 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Chebolu, S., Mináč, J., Schultz, A.: Galois \(p\)-groups and Galois modules. Rocky Mtn. J. Math. 46, 1405–1446 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Chemotti, F., Mináč, J., Schultz, A., Swallow, J.: Galois module structure of square power classes for biquadratic extensions. Manuscript (2021). Available at arxiv:2105.13207

  24. Colliot-Thélène, J.-L., Harbater, D., Hartmann, J., Krashen, D., Parimala, R., Suresh, V.: Local-global principles for tori over arithmetic curves. Algebra Geom. 7(5), 607–633 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Davis, R., Pries, R., Wickelgren, K.: The Galois action on the lower central series of the fundamental group of the Fermat curve. Available at arxiv: 1808.04917

  26. Davis, R., Pries, R., Stojanoska, V., Wickelgren, K.: Galois action on the homology of Fermat curves. In: Eischen, E., Long, L., Pries, R., Stange, K.E. (eds.) Directions in Number Theory: Proceedings of the 2014 WIN3 Workshop, pp. 57–86. Springer, New York (2016)

    MATH  Google Scholar 

  27. Davis, R., Pries, R., Stojanoska, V., Wickelgren, K.: The Galois action and cohomology of a relative homology group of Fermat curves. J. Algebra 505, 33–69 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Demuškin, S.P.: The group of maximal \(p\)-extension of a local field. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 25, 329–346 (1961)

    MathSciNet  MATH  Google Scholar 

  29. Demuškin, S.P.: On \(2\)-extensions of a local field. (Russian). Mat. Sibirsk Z. 4, 951–955 (1963)

    MathSciNet  Google Scholar 

  30. Demuškin, S.P.: Topological \(2\)-groups with an even number of generators and a complete defining relation. (Russian). Izv. Akad. Nauk. SSSR 29, 3–10 (1965)

    MathSciNet  Google Scholar 

  31. Drobotenko, V.S., Brobotenko, E.S., Zhilinskaya, Z.P., Pogorilyak, E.V.: Representations of cyclic groups of prime order \(p\) over rings of residue class mod \(p^s\). Am. Math. Soc. Transl. 69, 241–256 (1968)

  32. Efrat, I.: Orderings, valuations, and free products of Galois groups. Sem. Structure Algébriquet Ordonnées, Univ. Paris VII, No. 54 (1995)

  33. Efrat, I., Matzri, E.: Triple Massey products and absolute Galois groups. J. Eur. Math. Soc. 19, 3629–3640 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Efrat, I., Mináč, J.: On the descending central sequence of absolute Galois groups. Am. J. Math. 133(6), 1503–1532 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Faddeev, D.K.: On the structure of the reduced multiplicative group of a cyclic extension of a local field. Izv. Akad. Nauk SSSR Ser. Mat. 24, 145–152 (1960)

    MathSciNet  Google Scholar 

  36. Fein, B., Schacher, M.: Relative Brauer Groups I. J. Reine Angew. Math. 321, 179–194 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Fried, M.D., Jarden, M.: Field arithmetic. In: Jarden, M. (ed.) Ergebnisse der Mathematik, vol. 11, 3rd edn. Springer, Heidelberg (2008)

    Google Scholar 

  38. Gouvêa, F.Q.: \(p\)-adic Numbers, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  39. Grothendieck, A.: Brief an G. Faltings. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions, pp. 49–58. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  40. Guillot, P.: A Gentle Course in Local Class Field Theory. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  41. Guillot, P., Mináč, J., Topaz, A.: Four-fold Massey products in Galois cohomology with an Appendix by O Wittenberg. Compos. Math. 1549, 1921–1959 (2018)

    MATH  Google Scholar 

  42. Hannula, T.A.: Group representations over integers modulo a prime power. Ph. D. thesis, University of Illinois (1967)

  43. Hannula, T.A.: The integral representation ring \(a(R_kG)\). Trans. Am. Math. Soc. 133, 553–559 (1968)

    MATH  Google Scholar 

  44. Harbater, D.: Abhyankar’s conjecture on Galois groups over curves. Invent. Math. 117, 1–25 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Harbater, D., Hartmann, J.: Patching over fields. Israel J. Math. 176, 61–107 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Harbater, D., Hartmann, J., Krashen, D.: Local-global principles for torsors over arithmetic curves. Am. J. Math. 137(6), 1559–1612 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Harbater, D., Hartmann, J., Krashen, D.: Applications of patching to quadratic forms and central simple algebras. Invent. Math. 178, 231–263 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Harbater, D., Obus, A., Pries, R., Stevenson, K.: Abhyankar’s conjectures in Galois theory: current status and future directions. Bull. Am. Math. Soc. 55(2), 239–287 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Heller, L., Mináč, J., Nguyen, T.T., Schultz, A., Tân, N.D.: The Galois modules structure of the Artin-Schreier module for finite \(p\)-extensions. Available at arxiv: 2203.02604

  50. Hopkins, M., Wickelgren, K.: Splitting varieties for triple Massey products. J. Pure Appl. Algebra 219, 1304–1319 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Jarden, M.: Infinite Galois theory. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 1, pp. 271–319. Elsevier Science, Amsterdam (1996)

    Google Scholar 

  52. Jarden, M.: Algebraic patching. In: Springer Monographs in Mathematics. Springer-Verlag, Berlin (2011)

    Google Scholar 

  53. Jarden, M., Petersen, S.: The section conjecture over large algebraic extensions of finitely generated fields. To appear in Math. Nachr. Available at http://www.math.tau.ac.il/~jarden/Articles/paper119.pdf

  54. Kawada, Y.: On the structure of the Galois group of some infinite extensions. J. Fac. Sci. Univ. Tokyo 7, 1–18 (1954)

    MathSciNet  MATH  Google Scholar 

  55. Klopsch, B., Snopce, I.: Pro-\(p\) groups with constant generating number on open subgroups. J. Algebra 331(1), 263–270 (2011)

    MathSciNet  MATH  Google Scholar 

  56. Koblitz, N.: \(p\)-adic Numbers, \(p\)-adic Analysis, and Zeta-Functions, 2nd edn. Springer-Verlag, New York (1984)

    MATH  Google Scholar 

  57. Koch, H.: Galois Theory of \(p\)-Extensions. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  58. Labute, J.: Classification of Demushkin groups. Can. J. Math. 19, 106–132 (1967)

    MathSciNet  MATH  Google Scholar 

  59. Lemire, N., Mináč, J., Schultz, A., Swallow, J.: Galois module structure of Galois cohomology for embeddable cyclic extensions of degree \(p^n\). J. Lond. Math. Soc. 81(3), 525–543 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Lemire, N., Mináč, J., Swallow, J.: Galois module structure of Galois cohomology and partial Euler-Poincaré characteristics. J. Reine Angew. Math. 613, 147–173 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Marshall, M.: The elementary type conjecture in quadratic form theory. In: Baeza, R., Hsia, J.S., Jacob, B., Prestel, A. (eds.) Algebraic and arithmetic theory of quadratic forms, pp. 275–293. Contemp. Math., 344, Amer. Math. Soc., Providence, RI (2004)

  62. Mináč, J., Palaisti, M., Pasini, F., Tân, N.D.: Enhanced Koszul properties in Galois cohomology. Res. Math. Sci. 7(2) (2020), Article 10

  63. Mináč, J., Pasini, F., Quadrelli, C., Tân, N.D.: Koszul algebras and quadratic duals in Galois cohomology. To appear in Adv. Math. 380, 107569 (2021). Available at arxiv: 1808.01695

  64. Mináč, J., Rogelstad, M., Tân, N.D.: Relations in the maximal pro-\(p\) quotients of absolute Galois groups. Trans. Am. Math. Soc. 373, 2499–2524 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Mináč, J., Schultz, A., Swallow, J.: Automatic realizations of Galois groups with cyclic quotient of order \(p^n\). J. Théor. Nr. Bordx. 20, 419–430 (2008)

    MATH  Google Scholar 

  66. Mináč, J., Schultz, A., Swallow, J.: Galois module structure of Milnor \(K\)-theory mod \(p^s\) in characteristic \(p\). N. Y. J. Math. 14, 225–233 (2008)

    MathSciNet  MATH  Google Scholar 

  67. Mináč, J., Schultz, A., Swallow, J.: Galois module structure of \(p\)th-power classes of cyclic extensions of degree \(p^n\). Proc. Lond. Math. Soc. 96, 307–341 (2006)

    MATH  Google Scholar 

  68. Mináč, J., Schultz, A., Swallow, J.: Arithmetic properties encoded in the Galois module structure of \(K^\times /K^{\times p^m}\). Manuscript. Available at arxiv: 2105.13221. 36 pages

  69. Mináč, J., Schultz, A., Swallow, J.: On the indecomposability of a remarkable new family of modules appearing in Galois theory. J. Alg. 598, 194–235 (2022). Available at arxiv: 2105.13408

  70. Mináč, J., Spira, M.: Witt rings and Galois groups. Ann. Math. 144(1), 35–60 (1996)

    MathSciNet  MATH  Google Scholar 

  71. Mináč, J., Swallow, J.: Galois module structure of \(p\)th-power classes of extensions of degree \(p\). Israel J. Math. 138, 29–42 (2003)

    MathSciNet  MATH  Google Scholar 

  72. Mináč, J., Swallow, J.: Galois embedding problems with cyclic quotient of order \(p\). Israel J. Math. 145, 93–112 (2005)

    MathSciNet  MATH  Google Scholar 

  73. Mináč, J., Tân, N.D.: Triple Massey products vanish over all fields. J. Lond. Math. Soc. 94(3), 909–932 (2016)

    MathSciNet  MATH  Google Scholar 

  74. Mináč, J., Tân, N.D.: Construction of unipotent Galois extensions and Massey products. Adv. Math. 304, 1021–1054 (2017)

    MathSciNet  MATH  Google Scholar 

  75. Mináč, J., Tân, N.D.: Counting Galois \(\mathbb{U}_4(\mathbb{F}_p)\)-extensions using Massey products. J. Number Theory 176, 76–112 (2017)

    MathSciNet  MATH  Google Scholar 

  76. Mináč, J., Tân, N.D.: Triple Massey products and Galois theory. J. Eur. Math. Soc. 19(1), 255–284 (2017)

    MathSciNet  MATH  Google Scholar 

  77. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields. In: Grundlehren der Mathematischen Wissenschaften 323. SpringerVerlag, Berlin (2000)

    Google Scholar 

  78. Noseda, F., Snopce, I., Serre, J.-P.: Index-stable compact \(p\)-adic analytic groups. Arch. Math. 116, 153–160 (2021)

    MathSciNet  MATH  Google Scholar 

  79. Pierce, R.S.: Associative algebras. In: Graduate Texts in Mathematics, vol. 88. Springer-Verlag, New York (1982)

    Google Scholar 

  80. Positselski, L.: Galois cohomology of a number field is Koszul. J. Number Theory 145, 126–152 (2014)

    MathSciNet  MATH  Google Scholar 

  81. Raynaud, M.: Revêtements de la droite affine en caractéristique \(p>0\) et conjecture d’Abhyankar. Invent. Math. 116, 425–462 (1994)

    MathSciNet  MATH  Google Scholar 

  82. Rosenbaum, K.: On the structure of \(p\)-adic closure of cyclic extensions of local fields. Indian J. Math. 20(3), 255–264 (1978)

    MathSciNet  MATH  Google Scholar 

  83. Schultz, A.: Parameterizing solutions to any Galois embedding problem over \(\mathbb{Z}/p^n\mathbb{Z}\) with elementary \(p\)-abelian kernel. J. Algebra 411, 50–91 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Serre, J.P.: Structure de certain pro-\(p\) groupes. Sém. Bourbaki 1962–63, exposé 252. English translation in J.-P. Serre Oeuvres - Collected papers II, 1960–1971, 199–207. Berlin: Springer (1986)

  85. Serre, J.-P.: Local Fields. Springer-Verlag, New York (1979)

    MATH  Google Scholar 

  86. Serre, J.-P.: Topics in Galois Theory, 2nd edn. A K Peters Ltd, Wellesley, MA (2008)

    Google Scholar 

  87. Shafarevich, I.R.: On \(p\)-extensions. (Russian) Rec. Math. [Mat. Sbornik] N.S. 20 (62)(1947), 351–363. English translation in I. R. Shafarevich’s Collected Mathematical Papers, 6–19. Berlin: Springer-Verlag, (1989)

  88. Shusterman, M., Zalesskii, P.: Virtual retraction and Howson’s theorem in pro-\(p\) groups. Trans. Am. Math. Soc. 373(3), 1501–1527 (2020)

    MathSciNet  MATH  Google Scholar 

  89. Snopce, I., Zalesskii, P.A.: Subgroup properties of Demuskin groups. Math. Proc. Camb. Philos. Soc. 160(1), 1–9 (2016)

    MATH  Google Scholar 

  90. Szekeres, G.: Determination of a certain family of finite metabelian groups. Trans. Am. Math. Soc. 66, 1–43 (1949)

    MathSciNet  MATH  Google Scholar 

  91. Thévenaz, J.: Representations of finite groups in characteristic \(p^r\). J. Algebra 72, 478–500 (1981)

    MathSciNet  MATH  Google Scholar 

  92. Waterhouse, W.: The normal closures of certain Kummer extensions. Can. Math. Bull. 37(1), 133–139 (1994)

    MathSciNet  MATH  Google Scholar 

  93. Wickelgren, K.: \(3\)-Nilpotent obstructions to \({\pi }_1\) sections for \(\mathbb{P}^1_\mathbb{Q}-\{0,1,\infty \}\). In: Stix, J. (ed.) The Arithmetic of Fundamental Groups, PIA 2010, vol. 2, pp. 281–328. Springer-Verlag, Berlin (2012)

    Google Scholar 

  94. Wickelgren, K.: \(n\)-Nilpotent obstructions to \(\pi _1\) sections of \(\mathbb{P}^1-\{0,1,\infty \}\) and Massey products. In: Nakamura, H., Pop, F., Schneps, L., Tamagawa, A. (eds.) Advanced Studies in Pure Mathematics, Vol. 63 Galois-Teichmüller Theory and Arithmetic Geometry, pp. 579–600. Mathematical Society of Japan, Japan (2012)

    Google Scholar 

  95. Wickelgren, K.: \(2\)-Nilpotent real section conjecture. Math. Ann. 358, 361–387 (2014)

    MathSciNet  MATH  Google Scholar 

  96. Wickelgren, K.: Massey products \(\langle y, x, x,\cdots , x, x, y\rangle \) in Galois cohomology via rational points. J. Pure Appl. Algebra 221(7), 1845–1866 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions and collaborations with our friends and colleagues L. Bary-Soroker, S. Chebolu, F. Chemotti, I. Efrat, A. Eimer, J. Gärtner, S. Gille, P. Guillot, L. Heller, D. Hoffmann, J. Labute, C. Maire, D. Neftin, N.D. Tan, A. Topaz, R. Vakil and K. Wickelgren which have influenced our work in this and related papers. We would also like to thank the anonymous referee who provided valuable feedback that improved the quality and exposition of this manuscript.

Funding

The first author is partially supported by the Natural Sciences and Engineering Research Council of Canada Grant R0370A01. He also gratefully acknowledges the Faculty of Science Distinguished Research Professorship, Western Science, in years 2004/2005 and 2020/2021. The second author was partially supported by 2017–2019 Wellesley College Faculty Awards. The third author was supported in part by National Security Agency grant MDA904-02-1-0061.

Author information

Authors and Affiliations

Authors

Ethics declarations

Authors’ contribution

All authors contributed to the conceptualization, implementation, verification, and drafting of this article.

Availability of data and materials

Not applicable.

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is partially supported by the Natural Sciences and Engineering Research Council of Canada grant R0370A01. He also gratefully acknowledges the Faculty of Science Distinguished Research Professorship, Western Science, in years 2004/2005 and 2020/2021. The second author was partially supported by 2017–2019 Wellesley College Faculty Awards. The third author was supported in part by National Security Agency grant MDA904-02-1-0061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mináč, J., Schultz, A. & Swallow, J. Galois module structure of the units modulo \(p^m\) of cyclic extensions of degree \(p^n\). manuscripta math. 171, 295–345 (2023). https://doi.org/10.1007/s00229-022-01385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01385-z

Mathematics Subject Classification

Navigation