Skip to main content
Log in

Regularity for local minima of a special class of vectorial problems with fully anisotropic growth

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper we establish boundedness and continuity results for vectorial local minimizers of special classes of integral functionals. In particular we consider a class of vectorial problems in which the energy density satisfies fully anisotropic growth. We analyze two different types of anisotropic growths connected with the Orlicz Sobolev spaces. We prove boundedness results for energy densities satisfying anisotropic growth, moreover for particular energy densities we get Hölder continuity results by proving that each component belongs to a suitable De Giorgi class. Finally, we provide specific non-trivial instances of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Accademic Press, New York (1975)

    MATH  Google Scholar 

  2. Astarita, G., Marrucci, G.: Principles of Non-Newtoinian Fluid Mechanics. McGraw-Hill, London (1974)

    MATH  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988)

    MATH  Google Scholar 

  4. Breit, D., Stroffolini, B., Verde, A.: A general regularity theorem for functionals with \(\varphi \)-growth. J. Math. Anal. Appl. 383, 226–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carozza, M., Gao, H., Giova, R., Leonetti, F.: A boundedness resul for minimizers of some polyconvex integrals. J. Optim. Theory Appl. 178(3), 699–725 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cianchi, A.: Local boundedness of minimizers of anisotropic functionals. Ann. Inst. Henri Poincaré Anal. Non Linéaire 17(2), 147–168 (2000)

  7. Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. 196(2), 283–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cupini, G., Focardi, M., Leonetti, F., Mascolo, E.: On the Hőlder continuity for a class of vectorial problems. Adv. Nonlinear Anal. 9(1), 1008–1025 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cupini, G., Focardi, M., Leonetti, F., Mascolo, E.: Local boundedness of vectorial minimizers of nonconvex functionals. In: Bruno Pini Mathematical Analysis Seminar, Vol. 9, pp. 20–40. Univ. Bologna, Alma Mater Stud., Bologna (2018)

  10. Cupini, G., Leonetti, F., Mascolo, E.: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224(1), 269–289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst. Ser. B 1(11), 66–86 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of solutions to some anisotropic elliptic systems. Contemp. Math. 595, 169–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dacorogna, B.: Direct Methods in the Calculus Of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)

  14. Dall’Aglio, A., Mascolo, E., Papi, G.: Regularity for local minima of functionals with nonstandard growth conditions. Rend. Mat. VII 18, 305–326 (1998)

    MATH  Google Scholar 

  15. De Giorgi, E.: Sulla differenziabilità e l’analicità delle estremali delle estremali degli integrali multipli. Mem. Accad. Sci. Torino CL Sci. Fis. Mat. Nat. 3, 25–43 (1957)

  16. De Giorgi, E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellitico. Boll. Un. Mat. Ital. 4(1), 135–137 (1968)

    MATH  Google Scholar 

  17. Dibenedetto, E., Gianazza, U., Vespri, V.: Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic \(p\)-Laplacian type equations. J. Elliptic Parabol. Equ. 2, 157–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diening, L., Ruzika, M.: Non-Newtonian fluids and function spaces. Nonlinear Anal. Funct. Spaces Appl. 8, 95–143 (2007)

    MATH  Google Scholar 

  19. Diening, L., Stroffolini, B., Verde, A.: Everywhere regularity of functional with \(\varphi \)-growth. Manus. Math. 129, 440–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dougherty, M.M., Phillips, D.: Higher gradient integrability of equilibria for certain rank-one convex integrals. Siam J. Math. Anal. 28, 270–273 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuchs, M.: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. Math. Nachr. 284, 266–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giaquinta, M., Giusti, E.: On the regularity of minima of variational integrals. Acta Math. 148, 285–298 (1983)

    MathSciNet  MATH  Google Scholar 

  23. Giusti, E.: Metodi diretti nel Calcolo delle Variazioni. U. M. I, Bologna (1994)

    MATH  Google Scholar 

  24. Granucci, T.: An Harnack inequality for quasi-minima of scalar integral functionals with general growth conditions. Manuscr. Math. 152, 345–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Granucci, T.: \(L^\Phi \)-\(L^\infty \) inequalities and new remarks on the H\(\ddot{\rm o}\)lder continuity of the quasi-minima of scalar integral functionals with general growths. Bol. Soc. Mat. Mex. 22, 165–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Granucci, T., Randolfi, M.: Local boundedness of quasi-minimizers of fully anisotropic scalar variational problems. Manuscr. Math. 160, 99–152 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krasnosel’skij, M.A., Rutickii, Y.B.: Convex Function and Orlicz Spaces. Noordhoff, Groningen (1961)

    Google Scholar 

  28. Ladyženskaya, O.A., Ural’ceva, N.N.: Quasilinear elliptic equations and variational problems with many independent variables. Usp. Mat. Nauk. 16, 19–92 (1962)

    Google Scholar 

  29. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyženskaya and Ural’ceva for elliptic equations. Commun. Part. Differ. Equ. 16, 331–361 (1991)

    Article  Google Scholar 

  30. Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Sc. Norm. Super. Pisa 23, 1–25 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Mascolo, E., Papi, G.: Harnack inequality for minimizer of integral functionals with general growth conditions. Nonlinear. Differ. Equ. 3, 231–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Morrey, C.B.: Partial regularity results for non-linear elliptic systems. J. Math. Mech. 17, 649–670 (1967/1968)

  34. Moser, J.: A new proof of the De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)

    Article  Google Scholar 

  35. Nash, J.: Continuity of solutions of parabolic and elliptic differential equations. Am. J. Math. 80, 931–953 (1958)

    Article  MATH  Google Scholar 

  36. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  37. Sverak, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. Sect. A 120(1–2), 185–189 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tilli, P.: Remarks on the H\(\ddot{\rm o}\)lder continuity of solutions to elliptic equations in divergence form. Calc. Var. Partial Differ. Equ. 25, 395–401 (2006)

    Article  MATH  Google Scholar 

  39. Tolksdorf, P.: A new proof of a regularity theorem. Invent. Math. 71(1), 43–49 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropici. Ricerche Mat. 18, 3–24 (1969)

    MathSciNet  MATH  Google Scholar 

  42. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We should like to thank the anonymous referees for their useful suggestions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granucci, T., Randolfi, M. Regularity for local minima of a special class of vectorial problems with fully anisotropic growth. manuscripta math. 170, 677–772 (2023). https://doi.org/10.1007/s00229-021-01360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01360-0

Keywords

Mathematics Subject Classification

Navigation