Skip to main content
Log in

Symbolic power containments in singular rings in positive characteristic

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The containment problem for symbolic and ordinary powers of ideals asks for what values of a and b we have \(I^{(a)} \subseteq I^b\). Over a regular ring, a result by Ein–Lazarsfeld–Smith, Hochster–Huneke, and Ma–Schwede partially answers this question, but the containments it provides are not always best possible. In particular, a tighter containment conjectured by Harbourne has been shown to hold for interesting classes of ideals—although it does not hold in general. In this paper, we develop a Fedder (respectively, Glassbrenner) type criterion for F-purity (respectively, strong F-regularity) for ideals of finite projective dimension over F-finite Gorenstein rings and use our criteria to extend the prime characteristic results of Grifo–Huneke to singular ambient rings. For ideals of infinite projective dimension, we prove that a variation of the containment still holds, in the spirit of work by Hochster–Huneke and Takagi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Here \(I_e(\mathfrak {m})\) is the set of elements \(r \in R\) such that \(\phi (F^e_* r) \in \mathfrak {m}\) for every \(\phi \in {\text {Hom}}_R(F^e_* R, R)\).

  2. In fact, it is well-known that under mild assumptions, the property that \({\text {Hom}}_R(F_*^eR, R)\cong \mathbf {R}{\text {Hom}}_R(F^e_*R, R)\) for all e characterizes Gorenstein rings, see [14].

  3. Note that [15, Theorem 3.4] requires that we enlarge k to k(t), but this is only needed to guarantee that we have an infinite field so that we can pick general elements.

  4. We refer to [26] for the precise definition of asymptotic test ideal. In our context, we are considering the graded family of ideals \(\mathfrak {a}_\bullet {:=}\{\mathfrak {a}_n\}_n\) such that \(\mathfrak {a}_n=I^{(n)}\), and we use \(I^{(\bullet )}\) to abbreviate this notation.

References

  1. Aberbach, I.M., Enescu, F.: The structure of F-pure rings. Math. Z. 250(4), 791–806 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akesseh, S.: Ideal containments under flat extensions. J. Algebra 492, 44–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19(3), 399–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, T., Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, A., Syzdek, W., Szemberg, T.: A primer on Seshadri constants. Contemp. Math. 496, 39–70 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Czapliński, A., Główka, A., Malara, G., Lampa-Baczyńska, M., Łuszcz-Świdecka, P., Pokora, P., Szpond, J.: A counterexample to the containment \(I^{(3)}\subset I^2\) over the reals. Adv. Geom. 16(1), 77–82 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carvajal-Rojas, J., Smolkin, D.: The uniform symbolic topology property for diagonally F-regular algebras. J. Algebra 548, 25–52 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drabkin,B.: Configurations of linear spaces of codimension two and the containment problem. arXiv:1704.07870 (2017)

  8. Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \(I^{(3)}\subseteq I^2\) containment. J. Algebra 393, 24–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumnicki, M.: Containments of symbolic powers of ideals of generic points in \({\mathbb{P}} ^3\). Proc. Am. Math. Soc. 143(2), 513–530 (2015)

    Article  MATH  Google Scholar 

  10. Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144(2), 25–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fedder, R.: F-purity and rational singularity. Trans. Am. Math. Soc. 278(2), 461–480 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Grifo, E., Huneke, C.: Symbolic powers of ideals defining F-pure and strongly F-regular rings. Int. Math. Res. Not. IMRN 10, 2999–3014 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glassbrenner, D.: Strongly F-regularity in images of regular rings. Proc. Am. Math. Soc. 124(2), 345–353 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herzog, J.: Ringe der Charakteristik \(p\) und Frobeniusfunktoren. Math. Z. 140, 67–78 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2), 349–369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harbourne, B., Huneke, C.: Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28A, 247–266 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Huneke, C., Katz, D.: Uniform symbolic topologies in abelian extensions. Trans. Am. Math. Soc. 372(3), 1735–1750 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huneke, C., Katz, D., Validashti, J.: Uniform equivalente of symbolic and adic topologies. Ill. J. Math. 53(1), 325–338 (2009)

    MATH  Google Scholar 

  19. Harbourne, B., Seceleanu, A.: Containment counterexamples for ideals of various configurations of points in \({{ P}}^N\). J. Pure Appl. Algebra 219(4), 1062–1072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, L., Schwede, K.: Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. Invent. Math. 214(2), 913–955 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Malara, G., Szpond,J.: On codimension two flats in Fermat-type arrangements. In: Multigraded Algebra and Applications, volume 238 of Springer Proceedings of the Mathematics, pp. 95–109. Springer, Cham(2018)

  22. Peskine,C., Szpiro,L.: Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck. Inst. Hautes Études Sci. Publ. Math. 42, 47–119 (1973)

  23. Polstra, T., Smirnov, I.: Equimultiplicity theory of strongly F-regular rings. Michigan Math. J. 70(4), 837–856 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh, A.K.: F-regularity does not deform. Amer. J. Math. 121(4), 919–929 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Swanson, I.: Linear equivalence of topologies. Math. Zeitschrift 234, 755–775 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Takagi, S.: Formulas for multiplier ideals on singular varieties. Am. J. Math. 128(6), 1345–1362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takagi, S., Yoshida, K.-I.: Generalized test ideals and symbolic powers. Michigan Math. J. 57, 711–724 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Walker, R.M.: Rational singularities and uniform symbolic topologies. Illinois J. Math. 60(2), 541–550 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Walker, R.M.: Uniform Harbourne–Huneke bounds via flat extensions. J. Algebra 516, 125–148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Walker, R.M.: Uniform symbolic topologies in normal toric rings. J. Algebra 511, 292–298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Bernd Ulrich for giving us Example 6.3 and Proposition 6.5. We thank Srikanth Iyengar for very helpful discussions on derived categories and for providing us an alternative approach to Lemma 3.1 in Remark 3.2. We also thank Lucho Avramov, Jack Jeffries, Claudia Miller, and Alexandra Seceleanu for valuable conversations and for giving us several interesting examples. We also thank Javier Carvajal-Rojas, Craig Huneke, Thomas Polstra, and Axel Stäbler for useful conversations and comments. The first author thanks the University of Utah, where she was visiting when part of this project was completed, for their hospitality. Finally, we thank the anonymous referee for their valuable comments, especially Remark 5.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloísa Grifo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Grifo was supported in part by NSF Grant DMS #2001445 and #2140355.

Ma was supported in part by NSF Grant DMS #1901672, NSF FRG Grant #1952366, and a fellowship from the Sloan Foundation.

Schwede was supported in part by NSF CAREER Grant DMS #1252860/1501102, NSF Grant #1801849, and a Fellowship from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grifo, E., Ma, L. & Schwede, K. Symbolic power containments in singular rings in positive characteristic. manuscripta math. 170, 471–496 (2023). https://doi.org/10.1007/s00229-021-01359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01359-7

Mathematics Subject Classification

Navigation