Skip to main content
Log in

On the existence and asymptotic behavior of viscosity solutions of Monge–Ampère equations in half spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Monge–Ampère equation \(\text{ det }D^2u=f \) in \({\mathbb {R}}^n_+\), where f is bounded, positive and \(f(x)=1+O(|x|^{-\beta })\) for some \(\beta >2\) at infinity. If u is a quadratic polynomial on \(\{x_n=0\}\) and satisfies \( \mu |x|^2\le u\le \mu ^{-1}|x|^2\) for some \(0<\mu \le \frac{1}{2}\) at infinity, then u tends to a quadratic polynomial at infinity with at least \(O((\frac{x_n}{|x|^{n}})^\delta )\) decay rate, where \(\delta >0\) is some constant depending only on \(\beta \) and n. Meanwhile, the existence and uniqueness of viscosity solutions of the Dirichlet problem with prescribed asymptotic behavior at infinity will be concerned. The condition \(\beta >2\) is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.G. Bao, H.G. Li, and L. Zhang. Monge-Ampère equation on exterior domains. Calc. Var. Partial Differential Equations, 52(1–2), 39–63, 2015

    Article  MATH  Google Scholar 

  2. L.A. Caffarelli. Interior \(W^{2,p}\) estimates for solutions of the Monge-Ampère equation. Ann. of Math., 131(1):135–150, 1990

    Article  MathSciNet  MATH  Google Scholar 

  3. L.A. Caffarelli. A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. of Math., 131(1):129–134, 1990

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A.: Topics in PDEs: The Monge–Ampère equation. Graduate course. Courant Institute, New York University (1995)

  5. L.A. Caffarelli and Y.Y. Li. An extension to a theorem of Jörgens, Calabi, and Pogorelov. Comm. Pure Appl. Math., 56(5):549–583, 2003

    Article  MATH  Google Scholar 

  6. E. Calabi. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J., 5:105–126, 1958

    Article  MATH  Google Scholar 

  7. L. Ferrer, A. Martínez, and F. Milán. An extension of a theorem by K Jörgens and a maximum principle at infinity for parabolic affine spheres. Math. Z., 230(3):471–486, 1999

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Ferrer, A. Martínez, and F. Milán. The space of parabolic affine spheres with fixed compact boundary. Monatsh. Math., 130(1):19–27, 2000

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  10. Jia, X.B., Li, D.S.: The asymptotic behavior of viscosity solutions of Monge-Ampère equations in half space. Nonlinear Anal. 206, 112229 (2021)

    Article  MATH  Google Scholar 

  11. X.B. Jia, D.S. Li, and Z.S. Li. Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces. J. Differential Equations, 269(1), 326–348, 2020

    Article  MATH  Google Scholar 

  12. H.Y. Jian and X.-J. Wang. Existence of entire solutions to the Monge-Ampère equation. Amer. J. Math., 136(4):1093–1106, 2014

    Article  MATH  Google Scholar 

  13. K. Jörgens. über die Lösungen der Differentialgleichung \(rt-s^2=1\). Math. Ann., 127:130–134, 1954

    Article  MathSciNet  MATH  Google Scholar 

  14. Mooney, C.: Monge–Ampère equation. https://people.math.ethz.ch/~mooneyc/

  15. A.V. Pogorelov. On the improper convex affine hyperspheres. Geometriae Dedicata, 1(1), 33–46, 1972

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Savin. Pointwise \(C^{2,\alpha }\) estimates at the boundary for the Monge-Ampère equation. J. Amer. Math. Soc., 26(1):63–99, 2013

    Article  MATH  Google Scholar 

  17. O. Savin. A localization theorem and boundary regularity for a class of degenerate Monge-Ampere equations. J. Differential Equations, 256(2), 327–388, 2014

    Article  MATH  Google Scholar 

  18. Trudinger, N.S., Wang, X.-J.: The Monge–Ampère equation and its geometric applications. In: Handbook of Geometric Analysis. No. 1, Volume 7 of Adv. Lect. Math. (ALM), pp. 467–524. International Press, Somerville (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobiao Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X. On the existence and asymptotic behavior of viscosity solutions of Monge–Ampère equations in half spaces. manuscripta math. 170, 19–33 (2023). https://doi.org/10.1007/s00229-021-01354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01354-y

Mathematics Subject Classification

Navigation