Skip to main content

A construction of p-adic Asai L-functions for \(\mathrm{GL}_2\) over CM fields

Abstract

We give a construction of p-adic Asai L-functions for cohomological cuspidal automorphic representations of \(\mathrm{GL}_2\) over CM fields. If the base field is imaginary quadratic, Loeffler–Williams recently constructed such p-adic Asai L-functions. We generalize their construction to the case that the base fields are general CM fields.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Balasubramanyam, B.: \({{\mathfrak{p}}}\)-Adic distributions attached to twisted tensor \(L\)-functions for \({\rm GL}_2\) over CM fields. J. Number Theory 176, 13–36 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Balasubramanyam, B., Ghate, E., Vangala, R.: “\(p\)-adic Asai \(L\)-functions attached to Bianchi cusp forms. In: Modular Forms and Related Topics in Number Theory, Proceedings of the Mathematics Statistics, vol. 340, pp. 19–45, Springer (2020)

  3. 3.

    Bushnell, C.J., Henniart, G.: The Local Langlands Conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335. Springer, Berlin (2006)

    Book  Google Scholar 

  4. 4.

    Beilinson, A., Kings, G., Levin, A.: The topological polylogarithms and \(p\)-adic interpolation of \(L\)-values of totally real fields. Math. Ann. 371, 1449–1495 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Beilinson, A., Levin, A.: The elliptic polylogarithm. In: Motices (Seattle, WA, : Proceedings of Symposia in Pure Mathematics, vol. 55, Part II. American Mathematical Society, Providence 1994, 123–192 (1991)

  6. 6.

    Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups. Ann. Math. Stud. 94, Princeton University Press, Princeton (1980)

  7. 7.

    Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55, 1st edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. 8.

    Chen, S.-Y., Hsieh, M.L.: On primitive \(p\)-adic Rankin–Selberg \(L\)-functions. Adv. Stud. Pure Math. 86, 195–242 (2020)

    Article  Google Scholar 

  9. 9.

    Chen, S.-Y., Cheng, Y., Ishikawa, I.: Gamma factors for Asai representations of \({\rm GL}_2\). J. Number Theory 209, 83–146 (2020)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Clozel, L.: Motifs et formes automorphes: applications du principe, de fonctonalité” in Automorphic forms, Shimura varieties and \(L\)-functions, (L. Clozel et J.S. Milne edit.), vol. 1, pp. 77–159. Acadamic Press (1990)

  11. 11.

    Coates, J.: On \(p\)-adic \(L\)-functions attached to motives over \({{\mathbb{Q}}}\) II. Bol. Soc. Bras. Mat. 20(1), 101–112 (1989)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Coates, J., Perrin-Riou, B.: On \(p\)-adic \(L\)-functions attached to motives over \({{\mathbf{Q}}}\). Adv. Stud. Pure Math. 17, 23–54 (1989)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Deligne, P.: “Valeurs de fonctions \(L\) et périodes d’intégrales” in Automorphic Forms, Representations, and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore.: Proc. Symp. Pure Math. 33 Part II. American Mathematical Society, Providence 1979, pp. 247–289 (1977)

  14. 14.

    Flicker, Y.Z.: On zeros of the twisted tensor \(L\)-function. Math. Ann. 297(2), 199–219 (1993)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Gelbert, S., Jacquet, H.: A relation between automorphic representations of \({\rm GL}(2)\) and \({\rm GL}(3)\). Ann. Sci. École Norm. Sup. 11, 471–542 (1978)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ghate, E.: Critical values of the twisted tensor \(L\)-function in the imaginary quadratic case. Duke Math. J. 96(3), 595–638 (1999)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ghate, E.: Critical values of twisted tensor \(L\)-function over CM fields. In: Proceedings of the Symposium Pure Mathematics, vol. 66, Part I. American Mathematical Society, Providence, pp. 87–110 (1999)

  18. 18.

    Godement, R.H., Jacquet, H.: Zeta Functions of Simple Algebras, Lecture Note in Mathematics, vol. 260. Springer, Berlin (1972)

    Book  Google Scholar 

  19. 19.

    Grbac, N., Shahidi, F.: Endoscopic transfer for unitary groups and holomorphy of Asai \(L\)-functions. Pac. J. Math. 276, 185–211 (2015)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Harder, G.: Eisenstein cohomology of arithmetic groups. The case \({ m GL}(2)\). Invent. Math. 89, 37–118 (1987)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Hida, H.: Nearly ordinary Hecke algebras and Galois representations of several variables. In: Proceedings of the JAMI Inaugural Conference, Supplement to American Journal of Mathematics, pp. 115–134 (1989)

  22. 22.

    Hida, H.: \(p\)-ordinary cohomology groups for \({\rm SL}(2)\) over number fields. Duke Math. J. 69, 259–314 (1993)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Hida, H.: On the critical values of L-functions of \({\rm GL}(2)\) and \({\rm GL}(2) \times {\rm GL}(2)\). Duke Math. J. 74, 431–529 (1994)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Hida, H.: “Non-critical values of adjoint \(L\)-functions for \({\rm SL}(2)\)” in Automorphic Forms, Automorphic Representations, and Arithmetic (Forth Worth: Proceedings of the Symposium Pure Mathematics, vol. 66, Part I. American Mathematical Society, Providence, 1999, pp. 123–175 (1996)

  25. 25.

    Hsieh, M.L., Namikawa, K.: Inner product formula for Yoshida lifts. Ann. Math. Québec 42, 215–253 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Jacquet, H.: Auromorphic Forms on \({\rm GL}(2) II\), Lecture Note in Mathematics, vol. 278. Springer, Berlin (1972)

    Google Scholar 

  27. 27.

    Jacquet, H., Langlands, R.: Automorphic Forms on \({\rm GL}(2)\), Lecture Note in Mathematics, vol. 114. Springer, Berlin (1970)

    Book  Google Scholar 

  28. 28.

    Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, 117–290 (2004)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Krishnamurthy, M.: The Asai transfer to \({\rm GL}_4\) via the Langlands–Shahidi method. Int. Math. Res. Not. 41, 2221–2254 (2003)

    Article  Google Scholar 

  30. 30.

    Lanphier, D., Skogman, H.: Values of twisted tensor \(L\)-functions of automorphic forms over imaginary quadratic fields (with an appendix by H. Ochiai). Cand. J. Math. 66(5), 1078–1109 (2014)

  31. 31.

    Lei, A., Loeffler, D., Zerbes, S.: Euler systems for Hilbert modular surfaces. Forum Math. Sigma 6, e23 (2018)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Loeffler, D., Williams, C.: \(P\)-adic Asai \(L\)-functions of Bianchi modular forms. Algebra and Number Theory 14, 1169–1710 (2020)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Enlarged Springer, Berlin (1966)

    Book  Google Scholar 

  34. 34.

    Michel, P., Venkatesh, A.: The subconvexity problem for \({\rm GL}_2\). Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010)

    Article  Google Scholar 

  35. 35.

    Namikawa, K.: On \(p\)-adic \(L\)-function associated with cusp forms on \({\rm GL}_2\). Manuscr. Math. 153, 563–622 (2017)

    Article  Google Scholar 

  36. 36.

    Namikawa, K.: Explicit inner product formulas and Bessel period formulas for HST lifts, to appear in Kyoto J. Math

  37. 37.

    Scholl, A. J.: An introduction to Kato’s Euler systems. In: Galois representations in arithmetic algebraic geometry, (ed. A. J. Scholl and R. L. Taylor), pp. 379–460. Cambridge University Press (1998)

  38. 38.

    Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac.Sci. Univ. Tokyo Sect. IA Math. 23, 393–417 (1976)

  39. 39.

    Tate, J.: Number theoretic back ground. In: Automorphic Forms, Representations, and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proceedings of the Symposium Pure Mathematics. 33 Part II. American Mathematical Society, Providence, pp. 3–26 (1979)

Download references

Acknowledgements

The author is sincerely grateful to Ming-Lun Hsieh. The discussion with him on this subject was very helpful for preparing this paper. The author also thanks to David Loeffler for pointing out the paper [4] and his comments. The paper is indebted to Tadashi Ochiai for his valuable suggestions. The author is grateful to the referee for suggestions on the improvement of the present paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenichi Namikawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by JSPS Grant-in-Aid for Young Scientists (B) Grand No. JP17K14174 and JSPS Grant-in-Aid for Scientific Research (C) Grand No. JP21K03207.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Namikawa, K. A construction of p-adic Asai L-functions for \(\mathrm{GL}_2\) over CM fields. manuscripta math. (2021). https://doi.org/10.1007/s00229-021-01341-3

Download citation

Mathematics Subject Classification

  • 11F67
  • 11F75
  • 11R23