Skip to main content
Log in

Geometry of compact quasi-Einstein manifolds with boundary

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this article, we study the geometry of compact quasi-Einstein manifolds with boundary. We establish sharp boundary estimates for compact quasi-Einstein manifolds with boundary that improve some previous results. Moreover, we obtain a characterization theorem for such manifolds in terms of the surface gravity of the boundary components, which leads to a new sharp geometric inequality. In addition, we prove a boundary estimate for compact quasi-Einstein manifolds with (possibly disconnected) boundary in terms of the Brown–York mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrozio, L.: On static three-manifolds with positive scalar curvature. J. Differ. Geom. 107(1), 1–45 (2017). https://doi.org/10.4310/jdg/1505268028

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985). https://doi.org/10.1007/BFb0075847. (French)

  3. Baltazar, H., Diógenes, R., Ribeiro, E., Jr.: Isoperimetric inequality and Weitzenböck type formula for critical metrics of the volume. Isr. J. Math. 234(1), 309–329 (2019). https://doi.org/10.1007/s11856-019-1930-2

    Article  MATH  Google Scholar 

  4. Barros, A., da Silva, A.: Rigidity for critical metrics of the volume functional. Math. Nachr. 292(4), 709–719 (2019). https://doi.org/10.1002/mana.201700240

    Article  MathSciNet  MATH  Google Scholar 

  5. Batista, R., Diógenes, R., Ranieri, M., Ribeiro, E., Jr.: Critical metrics of the volume functional on compact three-manifolds with smooth boundary. J. Geom. Anal. 27(2), 1530–1547 (2017). https://doi.org/10.1007/s12220-016-9730-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Besse, A.L.: Einstein manifolds. In: Results in Mathematics and Related Areas (3), vol. 10. Springer, Berlin (1987)

  7. Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant: I. Class. Quantum Gravity 35(12), 125001, 43 (2018). https://doi.org/10.1088/1361-6382/aac081

    Article  MathSciNet  MATH  Google Scholar 

  8. Borghini, S., Mazzieri, L.: On the mass of static metrics with positive cosmological constant—II. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-020-03739-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Boucher, W., Gibbons, G.W., Horowitz, G.T.: Uniqueness theorem for anti-de Sitter spacetime. Phys. Rev. D (3) 30(12), 2447–2451 (1984). https://doi.org/10.1103/PhysRevD.30.2447

    Article  MathSciNet  Google Scholar 

  10. Case, J.S.: The nonexistence of quasi-Einstein metrics. Pac. J. Math. 248(2), 277–284 (2010). https://doi.org/10.2140/pjm.2010.248.277

    Article  MathSciNet  MATH  Google Scholar 

  11. Case, J.S.: Smooth metric measure spaces, quasi-Einstein metrics, and tractors. Cent. Eur. J. Math. 10(5), 1733–1762 (2012). https://doi.org/10.2478/s11533-012-0091-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93–100 (2011). https://doi.org/10.1016/j.difgeo.2010.11.003

    Article  MathSciNet  MATH  Google Scholar 

  13. Catino, G., Mantegazza, C., Mazzieri, L., Rimoldi, M.: Locally conformally flat quasi-Einstein manifolds. J. Reine Angew. Math. 675, 181–189 (2013). https://doi.org/10.1515/crelle.2011.183

    Article  MathSciNet  MATH  Google Scholar 

  14. Chern, S.: Some new characterizations of the Euclidean sphere. Duke Math. J. 12, 279–290 (1945)

    Article  MathSciNet  Google Scholar 

  15. Chruściel, P., Galloway, G., Potaux, Y.: Uniqueness and energy bounds for static AdS metrics. Phys. Rev. D 101, 064034 (2020). https://doi.org/10.1103/PhysRevD.101.064034

    Article  MathSciNet  Google Scholar 

  16. Corvino, J., Eichmair, M., Miao, P.: Deformation of scalar curvature and volume. Math. Ann. 357(2), 551–584 (2013). https://doi.org/10.1007/s00208-013-0903-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Diógenes, R., Gadelha, T.: Compact quasi-Einstein manifolds with boundary. Math. Nachr. (2019). (To appear). arxiv:1911.10068 [math.DG]

  18. Fang, Y., Yuan, W.: Brown–York mass and positive scalar curvature II: Besse’s conjecture and related problems. Ann. Glob. Anal. Geom. 56(1), 1–15 (2019). https://doi.org/10.1007/s10455-019-09653-0

  19. Freitas, A., Santos, M.: Boundary topology and rigidity results for generalized (\(\lambda \), n + m)-Einstein manifolds. Ann. Mat. Pura Appl. 199, 2511–2520 (2020). https://doi.org/10.1007/s10231-020-00978-3

    Article  MathSciNet  MATH  Google Scholar 

  20. He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271–311 (2012). https://doi.org/10.4310/CAG.2012.v20.n2.a3

    Article  MathSciNet  MATH  Google Scholar 

  21. He, C., Petersen, P., Wylie, W.: Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons. J. Reine Angew. Math. 707, 217–245 (2015). https://doi.org/10.1515/crelle-2013-0078

    Article  MathSciNet  MATH  Google Scholar 

  22. He, C., Petersen, P., Wylie, W.: Warped product Einstein metrics over spaces with constant scalar curvature. Asian J. Math. 18(1), 159–189 (2014). https://doi.org/10.4310/AJM.2014.v18.n1.a9

    Article  MathSciNet  MATH  Google Scholar 

  23. Hijazi, O., Montiel, S., Raulot, S.: Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant. Ann. Glob. Anal. Geom. 47(2), 167–178 (2015). https://doi.org/10.1007/s10455-014-9441-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Lohkamp, J.: The higher dimensional positive mass theorem II. arXiv:1612.07505 (2016)

  25. Lü, H., Page, D.N., Pope, C.N.: New inhomogeneous Einstein metrics on sphere bundles over Einstein–Kähler manifolds. Phys. Lett. B 593(1–4), 218–226 (2004). https://doi.org/10.1016/j.physletb.2004.04.068

    Article  MathSciNet  MATH  Google Scholar 

  26. Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. Partial Differ. Equ. 36(2), 141–171 (2009). https://doi.org/10.1007/s00526-008-0221-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Qing, J.: On the uniqueness of AdS space-time in higher dimensions. Ann. Henri Poincaré 5, 245–260 (2004). https://doi.org/10.1007/s00023-004-0168-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Ribeiro, E., Jr., Tenenblat, K.: Noncompact quasi-Einstein manifolds conformal to a Euclidean space. Math. Nachr. 294, 32–144 (2021)

    Article  MathSciNet  Google Scholar 

  29. Rimoldi, M.: A remark on Einstein warped products. Pac. J. Math. 252, 207–218 (2011). https://doi.org/10.2140/pjm.2011.252.207

    Article  MathSciNet  MATH  Google Scholar 

  30. Schoen, R., Yau, S.-T.: On the proof of positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  Google Scholar 

  31. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  Google Scholar 

  32. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arXiv:1704.05490v1 (2017)

  33. Shen, Y.: A note on Fischer–Marsden’s conjecture. Proc. Am. Math. Soc. 125(3), 901–905 (1997). https://doi.org/10.1090/S0002-9939-97-03635-6

  34. Shi, Y., Tam, L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62(1), 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  36. Wang, L.F.: On noncompact t-quasi-Einstein metrics. Pac. J. Math. 254(2), 449–464 (2011). https://doi.org/10.2140/pjm.2011.254.449

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan, W.: Brown–York mass and positive scalar curvature I—first eigenvalue problem and its applications. arXiv:1806.07798 [math.DG] (2018)

Download references

Acknowledgements

The authors want to thank the referee for the careful reading, relevant remarks and valuable suggestions. The third named author would like to thank the Instituto de Matemática—Universidade Federal Fluminense, where part of this work was carried out, for the fruitful research environment. He is grateful to Detang Zhou for the warm hospitality and enlightening conversations on the related topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernani Ribeiro Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Gadelha was partially supported by FUNCAP/Brazil.

E. Ribeiro was partially supported by CNPq/Brazil [Grants: 305410/2018-0 & 160002/2019-2] and CAPES/Brazil - Finance Code 001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diógenes, R., Gadelha, T. & Ribeiro, E. Geometry of compact quasi-Einstein manifolds with boundary. manuscripta math. 169, 167–183 (2022). https://doi.org/10.1007/s00229-021-01340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01340-4

Mathematics Subject Classification

Navigation