Bivia-Ausina, C.: Mixed Newton numbers and isolated complete intersection singularities. Proc. Lond. Math. Soc. 94(3), 749–771 (2007)
MathSciNet
Article
Google Scholar
J. Briançon. Le théorème de Kouchnirenko, unpublished lecture note
Eyral, C.: Uniform stable radius, Le numbers and topological triviality for line singularities. Pacific J. Math. 291(2), 359–367 (2017)
MathSciNet
Article
Google Scholar
Eyral, C., Oka, M.: Non-compact Newton boundary and Whitney equisingularity for non-isolated singularities. Adv. Math. 316, 94–113 (2017)
MathSciNet
Article
Google Scholar
Hamm, H.A.: Lokale topologische Eigenschaften komplexer Raume. Math. Ann. 191, 235–252 (1971)
MathSciNet
Article
Google Scholar
Hà, H.V., Phạm, T.S.: Invariance of the global monodromies in families of polynomials of two complex variables. Acta Math. Vietnam. 22(2), 515–526 (1997)
MathSciNet
MATH
Google Scholar
Hà, H.V., Zaharia, A.: Families of polynomials with total Milnor number constant. Math. Ann. 313, 481–488 (1996)
MathSciNet
MATH
Google Scholar
Huybrechts, D.: Complex Geometry: An Introduction. Springer, Berlin (2005)
MATH
Google Scholar
K. Kaveh and A.G. Khovanskii.: On mixed multiplicities of ideals. (2013) arXiv:1310.7979
Kerner, D., Nemethi, A.: Durfee-type bound for some non-degenerate complete intersection singularities. Math. Z. 285, 159–175 (2017)
MathSciNet
Article
Google Scholar
Kouchnirenko, A.G.: Polyhedres de Newton et nombre de Milnor. Invent. Math. 32, 1–31 (1976)
MathSciNet
Article
Google Scholar
Le, D.T., Ramanujam, C.P.: Invariance of Milnors number implies the invariance of topological type. Amer. J. Math. 98, 67–78 (1976)
MathSciNet
Article
Google Scholar
Looijenga., E. J. N.:Isolated singular points on complete intersections, London Mathematical Society lecture note series 77. Cambridge University Press London-New York (1984)
Milnor, J.: Singular points of complex hypersurfaces, Annals of Mathematics Studies 61. Princeton University Press (1968)
Nguyen, T.T., Phạm, P.P., Phạm, T.S.: Bifurcation sets and global monodromies of Newton nondegenerate polynomials on algebraic sets. Publ. RIMS Kyoto Univ. 55, 1–24 (2019)
MathSciNet
Article
Google Scholar
Nuno-Ballesteros, J.J., Orefice-Okamoto, B., Tomazella, J.N.: Equisingularity of families of isolated determinantal singularities. Math. Z. 289(3–4), 1409–1425 (2018)
MathSciNet
Article
Google Scholar
Mutsuo, O. K. A.: Deformation of Milnor fiberings. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 397–400. Correction in 27:2 (1980), 463–464
Mutsuo, O.K.A.: On the bifurcation of the multiplicity and topology of the Newton boundary. J. Math. Soc. Japan 31, 435–450 (1979)
MathSciNet
MATH
Google Scholar
Mutsuo, O.K.A.: Principal zeta-function of non-degenerate complete intersection singularity. J. Fac. Sci. Univ. Tokyo 37, 11–32 (1990)
MathSciNet
MATH
Google Scholar
Mutsuo, O.K.A.: Non-Degenerate Complete Intersection Singularity. Actualit’es Math’ematiques Hermann, Paris (1997)
MATH
Google Scholar
Phạm, T.S.: On the topology of the Newton boundary at infinity. J. Math. Soc. Japan 60(4), 1065–1081 (2008)
MathSciNet
Article
Google Scholar
Phạm, T.S.: Invariance of the global monodromies in families of nondegenerate polynomials in two variables. Kodai Math. J. 33(2), 294–309 (2010)
MathSciNet
MATH
Google Scholar