Skip to main content
Log in

Division algebras with common subfields

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study the partial ordering on isomorphism classes of central simple algebras over a given field F, defined by setting \(A_1 \le A_2\) if \(\deg A_1 = \deg A_2\) and every étale subalgebra of \(A_1\) is isomorphic to a subalgebra of \(A_2\), and generalizations of this notion to algebras with involution. In particular, we show that this partial ordering is invariant under passing to the completion of the base field with respect to a discrete valuation, and we explore how this partial ordering relates to the exponents of algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that this is somewhat different from the definition given in [14, Section 6]; however it is equivalent in the case of discrete valuations by [14, Lemma 6.2], and the fact that there are no tame and totally ramified division algebras over a complete discretely valued field (see, for example [31, Remark 3.2(a)]. We often assume that the degree of D is prime to the characteristic of F.

References

  1. Alexander, W.K.N., Jürgen, S.: Cohomology of Number Fields, volume 323. Springer-Verlag, Berlin, ISBN = 978-3-540-37888-4,. Grundlehren der Mathematischen Wissenschaften, (Second ed.) (2008)

  2. Adrian Albert, A.: Involutorial algebras and real riemann matrices. Ann. Math. 36, 886–964 (1935)

    Article  MathSciNet  Google Scholar 

  3. Caenepeel, S.: Brauer Groups, Hopf Algebras and Galois Theory. \(K\)-Monographs in Mathematics, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  4. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: On the genus of a division algebra. C. R. Math. Acad. Sci. Paris 350(17–18), 807–812 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: The genus of a division algebra and the unramified brauer group. Bull. Math. Sci. 3(2), 211–240 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: On the size of the genus of a division algebra. Proc. Steklov Inst. Math. 292(1), 63–93 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: The finiteness of the genus of a finite dimensional division algebra, and some generalizations. Israel J. Math. 236, 747–799 (2020)

    Article  MathSciNet  Google Scholar 

  8. DeMeyer, F., Ingraham, E.: Separable Algebras over Commutative Rings. Springer-Verlag, Berlin (1971)

    Book  Google Scholar 

  9. Fein, B., Schacher, M.: The ordinary quaternions over a Pythagorean field. Proc. Am. Math. Soc. 60(16–18), 1976 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Fein, B., Schacher, M., Wadsworth, A.: Division rings and the square root of –1. J. Algebra 65(2), 340–346 (1980)

    Article  MathSciNet  Google Scholar 

  11. Garibaldi, S., Saltman, D.J.: Quaternion algebras with the same subfields. In: Quadratic Forms, Linear Algebraic Groups, and Cohomology, volume 18 of Dev. Math., pp. 225–238. Springer, New York, (2010)

  12. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York (1977)

    Book  Google Scholar 

  13. Herstein, I.: Noncommutative Rings. Mathematical Association of America, Providence, R.I., Carus Mathematical Monographs 15 (1968)

  14. Jacob, B., Wadsworth, A.: Division algebras over Henselian fields. J. Algebra 128(1), 126–179 (1990)

    Article  MathSciNet  Google Scholar 

  15. Krashen, D., McKinnie, K.: Distinguishing division algebras by finite splitting fields. Manuscr. Math. 134, 171–182 (2011)

    Article  MathSciNet  Google Scholar 

  16. Meyer, J.S.: Division algebras with infinite genus. Bull. Lond. Math. Soc. 46(3), 463–468 (2014)

    Article  MathSciNet  Google Scholar 

  17. Merkurjev, A.S., Tignol, J.-P.: The multipliers of similitudes and the brauer group of homogeneous varieties. J. Reine Angew. Math. 461, 13–47 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Pierce, R.S.: Associative Algebras. Studies in the History of Modern Science, vol. 9. Springer-Verlag, New York (1982)

  19. Raynaud, M.: Anneaux locaux henséliens. Lecture Notes in Mathematics, vol. 169. Springer-Verlag, Berlin-New York (1970)

  20. Prasad, G., Rapinchuk, A.: Irreducible tori in semisimple groups. Int. Math. Res. Not. 461, 1229–1242 (2001)

    Article  MathSciNet  Google Scholar 

  21. Riehm, C.: The corestriction of algebraic structures. Invent. Math. 11, 73–98 (1970)

    Article  MathSciNet  Google Scholar 

  22. Rowen, L.H.: Graduate Algebra: A noncommutative view, volume 91. American Mathematical Society, Providence, RI. Graduate Studies in Mathematics (2008)

  23. Rapinchuk, A.S., Rapinchuk, I.A.: On division algebras having the same maximal subfields. Manuscr. Math. 132(3–4), 273–293 (2010)

    Article  MathSciNet  Google Scholar 

  24. Rapinchuk, A., Rapinchuk, I.: Some finiteness results for algebraic groups and unramifiedcohomology over higher-dimensional fields. (3), 463–468 (2020)

  25. Saltman, D.J.: The Schur index and Moody’s theorem. \(K\)-Theory 7(4), 309–332 (1993)

  26. Saltman, D.J.: Lectures on division algebras. Published by American Mathematical Society, Providence, RI (1999)

  27. Saltman, D.J.: Lectures on division algebras. CBMS Regional Conference Series in Mathematics, vol. 94. Published by American Mathematical Society, Providence, RI (1999)

  28. Serre, J-P.: Local fields. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg

  29. Schofield, A., Van den Bergh, M.: The index of a Brauer class on a Brauer-Severi variety. Trans. Am. Math. Soc. 333(2), 729–739 (1992)

    Article  MathSciNet  Google Scholar 

  30. Tikhonov, S.V.: Division algebras of prime degree with infinite genus. Proc. Steklov Inst. Math. 292(1), 256–259 (2016)

    Article  MathSciNet  Google Scholar 

  31. Tignol, J.-P., Wadsworth, A.R.: Totally ramified valuations on finite-dimensional division algebras. Trans. Am. Math. Soc. 302(1), 223–250 (1987)

    Article  MathSciNet  Google Scholar 

  32. Wadsworth, A.: Valuation theory on finite dimensional division algebras. In: Valuation Theory and Its Applications, vol. I., volume 32 of Fields Inst Commun, pp. 385–449. Amer. Math. Soc., Providence, RI (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Rowen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the U.S.-Israel Binational Science Foundation (Grant No. 201049) and by the Israel Science Foundation (Grant No. 630/17)

The authors have no conflicts of interest to declare that are relevant to the content of this article. There is no extra data.

The authors thank the referee for correcting some slips and suggesting improved proofs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krashen, D., Matzri, E., Rapinchuk, A. et al. Division algebras with common subfields. manuscripta math. 169, 209–249 (2022). https://doi.org/10.1007/s00229-021-01315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01315-5

Mathematics Subject Classification

Navigation