Skip to main content

Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities


The paper deals with the following singular fractional problem

$$\begin{aligned} \left\{ \begin{array}{lll} M\left( \displaystyle \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\right) (-\Delta )^{s} u-\mu \displaystyle \frac{u}{|x|^{2s}}= \lambda f(x)u^{-\gamma }+ g(x){u^{2^*_s-1}}&{}\;\; \text {in}\; \Omega ,\\ u>0&{} \;\; \text {in}\; \Omega ,\\ u=0&{}\;\;\text {in}\;{\mathbb {R}}^N\setminus \Omega , \end{array}\right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^N\) is an open bounded domain, with \(0\in \Omega \), dimension \(N>2s\) with \(s\in (0,1)\), \(2^*_s=2N/(N-2s)\) is the fractional critical Sobolev exponent, \(\lambda \) and \(\mu \) are positive parameters, exponent \(\gamma \in (0,1)\), M models a Kirchhoff coefficient, f is a positive weight while g is a sign-changing function. The main feature and novelty of our problem is the combination of the critical Hardy and Sobolev nonlinearities with the bi-nonlocal framework and a singular nondifferentiable term. By exploiting the Nehari manifold approach, we provide the existence of at least two positive solutions.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. Abdellaoui, B., Medina, M., Peral, I., Primo, A.: The effect of the Hardy potential in some Calderón–Zygmund properties for the fractional Laplacian. J. Differ. Equ. 260, 8160–8206 (2016)

    Article  Google Scholar 

  2. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125, 699–714 (2015)

    Article  MathSciNet  Google Scholar 

  3. Barrios, B., De Bonis, I., Medina, M., Peral, I.: Semilinear problems for the fractional Laplacian with a singular nonlinearity. Open Math. 13, 390–407 (2015)

    Article  MathSciNet  Google Scholar 

  4. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011, xiv+599 pp

  5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functional. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  6. Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations. Ann. Mat. Pura Appl. 195, 2099–2129 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dipierro, S., Montoro, L., Peral, I., Sciunzi, B.: Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy–Leray potential. Calc. Var. 55, 99 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fiscella, A.: A fractional Kirchhoff problem involving a singular term and a critical nonlinearity. Adv. Nonlinear Anal. 8, 645–660 (2019)

    Article  MathSciNet  Google Scholar 

  9. Fiscella, A., Mishra, P.K.: The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms. Nonlinear Anal. 186, 6–32 (2019)

    Article  MathSciNet  Google Scholar 

  10. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 924–950 (2008)

    MATH  Google Scholar 

  11. Goyal, S.: Fractional Hardy–Sobolev operator with sign-changing and singular nonlinearity. Appl. Anal. 99, 2892–2916 (2020)

    Article  MathSciNet  Google Scholar 

  12. Herbst, I.W.: Spectral theory of the operator \((p^2+m^2)^{1/2}-Ze^2r\). Commun. Math. Phys. 53, 285–294 (1977)

    Article  Google Scholar 

  13. Servadei, R., Valdinoci, E.: Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  14. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  15. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  16. Sun, Y., Wu, S.: An exact estimate result for a class of singular equations with critical exponents. J. Funct. Anal. 260, 1257–1284 (2011)

    Article  MathSciNet  Google Scholar 

  17. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MathSciNet  Google Scholar 

Download references


A. Fiscella is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica “G. Severi" (INdAM). A. Fiscella realized the manuscript within the auspices of the INdAM-GNAMPA project titled Equazioni alle derivate parziali: problemi e modelli (Prot_20191219-143223-545), of the FAPESP Project titled Operators with non standard growth (2019/23917-3), of the FAPESP Thematic Project titled Systems and partial differential equations (2019/02512-5) and of the CNPq Project titled Variational methods for singular fractional problems (3787749185990982).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alessio   Fiscella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

  Fiscella, A., Mishra, P.K. Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities. manuscripta math. 168, 257–301 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification

  • 35J75
  • 35R11
  • 49J35