Skip to main content
Log in

On Fourier coefficients of elliptic modular forms \(\bmod \, \ell \) with applications to Siegel modular forms

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study several aspects of nonvanishing Fourier coefficients of elliptic modular forms \(\bmod \, \ell \), partially answering a question of Bellaïche-Soundararajan concerning the asymptotic formula for the count of the number of Fourier coefficients upto x which do not vanish \(\bmod \, \ell \). We also propose a precise conjecture as a possible answer to this question. Further, we prove several results related to the nonvanishing of arithmetically interesting (e.g., primitive or fundamental) Fourier coefficients \(\bmod \, \ell \) of a Siegel modular form with integral algebraic Fourier coefficients provided \(\ell \) is large enough. We also make some efforts to make this “largeness” of \(\ell \) effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anamby, P., Das, S.: Distinguishing Hermitian cusp forms of degree 2 by a certain subset of all Fourier coefficients. Publ. Mat. 63(1), 307–341 (2019)

    Article  MathSciNet  Google Scholar 

  2. Anamby, P., Das, S.: Hecke-Siegel type threshold for square-free Fourier coefficients: an improvement. In: RIMS Kokyuroku Kyoto Univ., Proceedings for the Conference "Analytic and Arithmetic Theory of Automorphic Forms" (2018)

  3. Andrianov, A.N.: Twisting of Siegel modular forms with characters, and L-functions 1012 (Russian. Russian summary). Algebra i Analiz 20(6), 1–29 (2008), translation in St: Petersburg Math. J. 20(6), 851–871 (2009)

  4. Balog, A., Ono, K.: The Chebotarev density theorem in short intervals and some questions of Serre. J. Number Theory. 91(2), 356–371 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bellaïche, J.: Image of pseudo-representations and coefficients of modular forms modulo \(p\). Adv. Math. 353, 647–721 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bellaïche, J., Soundararajan, K.: The number of nonzero coefficients of modular forms \(~({\rm mod}\; p)\). Algebra Number Theory 9(8), 1825–1856 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bellaïche, J., Green, B., Soundararajan, K.: Nonzero coefficients of half-integral weight modular forms mod \(\ell \). Res. Math. Sci. 5(1), 10 (2018)

    Article  MathSciNet  Google Scholar 

  8. Böcherer, S., Das, S.: On fundamental Fourier coefficients of Siegel modular forms. https://sites.google.com/site/somuhomepage/. https://arxiv.org/abs/1810.00762

  9. Böcherer, S., Kikuta, T.: On mod \(p\) singular modular forms. Forum Math. 28(6), 1051–1065 (2016)

    Article  MathSciNet  Google Scholar 

  10. Böcherer, S., Nagaoka, S.: Congruences for Siegel modular forms and their weights. Abh. Math. Semin. Univ. Hambg. 80(2), 227–231 (2010)

    Article  MathSciNet  Google Scholar 

  11. Das, S.: Omega results for Fourier coefficients of half-integral weight and Siegel modular forms. In: Springer Proceedings of Mathematics and Statistics, Procedding of the Conference at KSoM, Kerala in Honour of Prof. M. Manickam’s 60th Birthday

  12. Hida, H.: On congruence divisors of cusp forms as factors of the special values of their zeta functions. Invent. Math. 64(2), 221–262 (1981)

    Article  MathSciNet  Google Scholar 

  13. Hida, H.: Congruence of cusp forms and special values of their zeta functions. Invent. Math. 63(2), 225–261 (1981)

    Article  MathSciNet  Google Scholar 

  14. Iwaniec, H., Kowalski, E.: Analytic Number Theory, Am. Math. Soc, vol. 53. Colloquium Publications (2004)

  15. Jochnowitz, N.: Congruences between systems of eigenvalues of modular forms. Trans. Am. Math. Soc. 270(1), 269–285 (1982)

    Article  MathSciNet  Google Scholar 

  16. Kohnen, W.: On Fourier coefficients of modular forms of different weights. Acta Arith. 113(1), 57–67 (2004)

    Article  MathSciNet  Google Scholar 

  17. Lichtenstein, S.: The effective Chebotarev density theorem and modular forms modulo \(\mathfrak{m}\). Proc. Am. Math. Soc. 136(10), 3419–3428 (2008)

    Article  MathSciNet  Google Scholar 

  18. Miyake, T.: Modular forms. Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, x+335 pp (2006)

  19. Ram Murty, M.: Bounds for congruence primes. In: Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996), Proceedings of Symposium Pure Mathematics, vol. 66, Part 1, Amer. Math. Soc., Providence, RI, pp. 177–192 (1999)

  20. Raum, M., Richter, O.K.: Sturm bounds for Siegel modular forms. Res. Number Theory 1, 8 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ribet, K.: Mod \(p\) Hecke operators and congruences between modular forms. Invent. Math. 71(1), 193–205 (1983)

    Article  MathSciNet  Google Scholar 

  22. Saha, A.: Siegel cusp forms of degree 2 are determined by their fundamental Fourier coefficients. Math. Ann. 355(1), 363–380 (2013)

    Article  MathSciNet  Google Scholar 

  23. Serre, J.P.: Formes modulaires et fonctions zeta p-adiques. In: Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, Springer Verlag, pp. 191–268 (1973)

  24. Serre, J.P.: Divisibilité de certaines fonctions arithmétiques. Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 16, no\(^\circ \)1, exp. no\(^{\circ }\) 20, pp. 1–28 (1974–1975)

  25. Shimura, G.: On the Fourier coefficients of modular forms of several variables. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl., vol. II, no. 17, pp. 261–268 (1975)

  26. Ventosa, X.T.: Theoretical and algorithmic aspects of congruences between modular Galois representations. PhD Thesis, Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften Dem Fachbereich 6 (Mathematik und Informatik) der Universität Duisburg-Essen, 14 April (2009)

  27. Weisinger, J.: Some results on classical Eisenstein series and modular forms over function fields. Harvard Univ, Thesis (1977)

    Google Scholar 

  28. Yamana, S.: Determination of holomorphic modular forms by primitive Fourier coefficients. Math. Ann. 344, 853–863 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S.D. was supported by a Humboldt Fellowship from the Alexander von Humboldt Foundation at Universität Mannheim during the preparation of the paper, and thanks both for the generous support and for providing excellent working conditions. The authors acknowledge the use of the LMFDB databse for some numerical computations. S.D also thanks IISc. Bangalore, DST (India) and UGC-CAS for financial support. During the preparation of this work S.D. was supported by a MATRICS grant MTR/2017/000496 from DST-SERB, India. We thank M. Raum for his comments on Siegel modular forms \(\bmod p\). We are thankful to the referee for a thorough checking of the paper and for giving valuable suggestions which improved the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böcherer, S., Das, S. On Fourier coefficients of elliptic modular forms \(\bmod \, \ell \) with applications to Siegel modular forms. manuscripta math. 167, 405–434 (2022). https://doi.org/10.1007/s00229-021-01277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01277-8

Mathematics Subject Classification

Navigation