1 Introduction

In [6], D’Agnolo et al. describe how to compute the Stokes matrices of the enhanced Fourier–Sato transform of a perverse sheaf on the affine line by purely topological methods. To a regular singular holonomic \({\mathcal {D}}\)-module \({\mathcal {M}} \in \mathrm{Mod}_{\mathrm {rh}} \left( {\mathcal {D}}_{{\mathbb {A}}^1}\right) \) on the affine line, one associates a perverse sheaf via the regular Riemann–Hilbert correspondence

$$\begin{aligned} R{\mathcal {H}}om_{{\mathcal {D}}_{{\mathbb {A}}^1}^{\mathrm {an}}} \left( (\bullet )^{\mathrm {an}}, {\mathcal {O}}_{{\mathbb {A}}^1}^{\mathrm {an}}\right) [1] :\mathrm{Mod}_{\mathrm {rh}} \left( {\mathcal {D}}_{{\mathbb {A}}^1}\right) {\mathop {\longrightarrow }\limits ^{\simeq }} \mathrm{Perv}\left( {\mathbb {C}}_{{\mathbb {A}}^1}\right) . \end{aligned}$$

Let \(\Sigma \subset {\mathbb {A}}^1\) denote the set of singularities of \({\mathcal {M}}\). Following [6, Sect. 4.2], after suitably choosing a total order on \(\Sigma \), the resulting perverse sheaf \(F\in \mathrm{Perv}_{\Sigma }\left( {\mathbb {C}}_{{\mathbb {A}}^1}\right) \) can be described by linear algebra data, namely its quiver

$$\begin{aligned} \left( \Psi (F),\Phi _{\sigma }(F), u_{\sigma },v_{\sigma } \right) _{\sigma \in \Sigma }, \end{aligned}$$

where \(\Psi (F)\) and \(\Phi _{\sigma }(F)\) are finite dimensional \({\mathbb {C}}\)-vector spaces and \(u_{\sigma } :\Psi (F) \rightarrow \Phi _{\sigma }(F)\) and \(v_{\sigma } :\Phi _{\sigma }(F) \rightarrow \Psi (F)\) are linear maps such that \(1-u_{\sigma }v_{\sigma }\) is invertible for any \(\sigma \). The main result in [6] is a determination of the Stokes matrices of the enhanced Fourier–Sato transform of F and therefore of the Fourier–Laplace transform of \({\mathcal {M}}\) in terms of the quiver of F. This result builds on the irregular Riemann–Hilbert correspondence of D’Agnolo and Kashiwara [7], which provides a topological description of holonomic \({\mathcal {D}}\)-modules. As proven by Kashiwara and Schapira [14], this correspondence intertwines the Fourier–Laplace with the (enhanced) Fourier–Sato transform.

Mirror symmetry connects the weighted projective line \({\mathbb {P}}(1,3)\) with the Landau–Ginzburg model

$$\begin{aligned} \left( {\mathbb {G}}_m, f=x+x^{-3} \right) . \end{aligned}$$

The quantum connection of \({\mathbb {P}}(1,3)\) is closely related to the Fourier–Laplace transform of the Gauß–Manin system \(H^0(\int _f {\mathcal {O}})\) of f. We compute that

$$\begin{aligned} F:=\mathrm{R}f_{*}{\mathbb {C}}[1]\in \mathrm{Perv}_{\Sigma }\left( {\mathbb {C}}_{{\mathbb {A}}^1}\right) , \end{aligned}$$

where \(\Sigma \) denotes the set of singular values of f, is the perverse sheaf associated to \(H^0(\int _f {\mathcal {O}})\) by the Riemann–Hilbert correspondence. In Sect. 1, we compute the localized Fourier–Laplace transform of \(H^0(\int _f {\mathcal {O}})\). In Sect. 2, analogous to the examples in [6, Sect. 7], we carry out the topological computation of the Stokes matrices of the Fourier–Laplace transform of \(H^0(\int _f {\mathcal {O}})\). In Sect. 3, we compare the Stokes matrix \(S_{\beta }\), that we obtained from our topological computations, to the Gram matrix of the Euler–Poincaré pairing on \(D^b(\mathrm{Coh}({\mathbb {P}}(1,3)))\) with respect to a suitable full exceptional collection. Following Dubrovin’s conjecture about the Stokes matrix of the quantum connection, proven for the weighted projective space \({\mathbb {P}}\left( \omega _0,\ldots ,\omega _n\right) \) by Tanabé and Ueda in [19] and by Cruz Morales and van der Put in [5], they are known to be equivalent after appropriate modifications. We give the explicit braid of the braid group \(B_4\) that deforms the Gram matrix into the Stokes matrix \(S_{\beta }\). Section 4 tackles the computations for the case of non-coprime parameters. In comparison to the case of coprime parameters, this requires a slightly modified approach. We compute the Stokes matrices of the Fourier–Laplace transform of the Gauß–Manin system of the Landau–Ginzburg model of \({\mathbb {P}}(2,2)\) and set it into relation with the Gram matrix of the Euler–Poincaré pairing on \(D^b(\mathrm{Coh}({\mathbb {P}}(2,2)))\).

This article is based on the doctoral thesis [18] of the author. The figures in Sects. 2 and 4 were mainly produced in SAGE. In the online version of this article, the figures are provided in color.

2 Gauß–Manin system and its Fourier–Laplace transform

Let X be affine and f a regular function \(f :X \rightarrow {\mathbb {A}}^1\) on X. Denote by \(\int _f (\bullet )\) the direct image in the category of \({\mathcal {D}}\)-modules and by \(M:=H^0 (\int _f {\mathcal {O}}_X )\in \mathrm{Mod}_{\mathrm {rh}}\left( {\mathcal {D}}_{{\mathbb {A}}^1}\right) \) the zeroth cohomology of the Gauß–Manin system of f. Following [9, Sect. 2.c], it is given by

$$\begin{aligned} M= \Omega ^n (X)\left[ \partial _t \right] / (d-\partial _t df \wedge )\Omega ^{n-1} (X)\left[ \partial _t \right] . \end{aligned}$$

Denote by \(G:={\widehat{M}}[\tau ^{-1}]\) the Fourier–Laplace transform of M, localized at \(\tau = 0\). It is given by

$$\begin{aligned} G = \Omega ^n(X)\left[ \tau ,\tau ^{-1}\right] / \left( d - \tau df\wedge \right) \Omega ^{n-1}(X)\left[ \tau ,\tau ^{-1}\right] . \end{aligned}$$

G is a free \({\mathbb {C}} [\tau , \tau ^{-1}]\)-module of finite rank. Rewriting in the variable \(\theta =\tau ^{-1}\) gives the \({\mathbb {C}} [\theta ,\theta ^{-1}]\)-module

$$\begin{aligned} G = \Omega ^n(X)\left[ \theta ,\theta ^{-1}\right] / \left( \theta d - df\wedge \right) \Omega ^{n-1}(X)\left[ \theta ,\theta ^{-1}\right] . \end{aligned}$$

G is endowed with a flat connection given as follows. For \(\gamma = \left[ \sum _{k \in {\mathbb {Z}}} \omega _k \theta ^k \right] \in G\), where \(\Omega ^n(X)\ni \omega _k =0\) for almost all k, the connection is given by (cf. [12, Definition 2.3.1]):

$$\begin{aligned} \theta ^2 \nabla _{ \frac{\partial }{\partial \theta }} \left( \gamma \right) = \left[ \sum _k f \omega _k \theta ^k + \sum _k k \omega _k \theta ^{k+1} \right] . \end{aligned}$$

It is known that \((G,\nabla )\) has a regular singularity at \(\theta = \infty \) and possibly an irregular one at \(\theta = 0\).

We now consider the Laurent polynomial \(f=x+x^{-3}\in {\mathbb {C}}\left[ x,x^{-1}\right] \), being a regular function on the multiplicative group \({\mathbb {G}}_m\). For our computations we pass to the variable \(\theta =\tau ^{-1}\). We compute that for the given f, G is given by the free \({\mathbb {C}} \left[ \theta ,\theta ^{-1}\right] \)-module

$$\begin{aligned} G={\mathbb {C}} \left[ x,x^{-1}\right] dx\left[ \theta ,\theta ^{-1}\right] /\left( \theta d-\left( dx-3x^{-4}dx\right) \wedge \right) {\mathbb {C}} \left[ x,x^{-1}\right] \left[ \theta ,\theta ^{-1}\right] \end{aligned}$$

with basis over \({\mathbb {C}} \left[ \theta ,\theta ^{-1} \right] \) given by \(\left[ \frac{dx}{x}\right] , \left[ \frac{dx}{x^2}\right] ,\left[ \frac{dx}{x^3}\right] , \left[ \frac{dx}{x^4}\right] \). In this basis, the connection is given by

$$\begin{aligned} \theta \nabla _{ \frac{\partial }{\partial \theta } }= \theta \partial _{\theta } + \begin{pmatrix} 0 &{}\quad \frac{4}{3\theta } &{}\quad 0 &{}\quad 0\\ 0 &{}\quad \frac{1}{3} &{}\quad \frac{4}{3\theta } &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \frac{2}{3} &{}\quad \frac{4}{3\theta }\\ \frac{4}{\theta } &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}. \end{aligned}$$
(1)

Via the cyclic vector \(m=(1,0,0,0)^{\mathrm {t}}\), we compute the relation

$$\begin{aligned} \nabla _{\theta \partial _{\theta }}^4m + 4 \nabla _{\theta \partial _{\theta }}^3m + \frac{32}{9}\nabla _{\theta \partial _{\theta }}^2m-\frac{256}{27\theta ^4}m =0 \end{aligned}$$

and therefore associate the differential operator

$$\begin{aligned} P = \left( \theta \partial _{\theta }\right) ^4 + 4 \left( \theta \partial _{\theta }\right) ^3 + \frac{32}{9}\left( \theta \partial _{\theta }\right) ^2 - \frac{256}{27\theta ^4}\in {\mathbb {C}}\left[ \theta , \theta ^{-1} \right] \langle \partial _{\theta } \rangle = {\mathcal {D}}_{{\mathbb {G}}_m}. \end{aligned}$$
Fig. 1
figure 1

Newton polygon of P

As it is well known, one can read the type of the singularities at 0 and \(\infty \) from the Newton polygon in the sense of Ramis (cf. [15, Chapter V]). The Newton polygon in Fig. 1 confirms that P—and therefore system (1)—has the nonzero slope 1 and therefore is irregular singular at \(\theta = 0\) and regular singular at \(\theta = \infty \).

3 Topological computation of the Stokes matrices

We consider the Laurent polynomial \(f=x+x^{-3}:{\mathbb {G}}_m \rightarrow {\mathbb {A}}^1\). Its critical points are given by \(\left\{ \pm \root 4 \of {3}, \pm \root 4 \of {3} i \right\} \). The critical values of f are given by

$$\begin{aligned} \Sigma = \left\{ \pm \frac{4}{\root 4 \of {27}}, \pm \frac{4i}{\root 4 \of {27}} \right\} \subset {\mathbb {A}}^1. \end{aligned}$$

The preimages of 

  • \(\frac{4}{\root 4 \of {27}}\) are \( \root 4 \of {3}\) (double), \(\frac{-1-\sqrt{2}i}{\root 4 \of {27}}\) and \(\frac{-1+\sqrt{2}i}{\root 4 \of {27}}\),

  • \(-\frac{4}{\root 4 \of {27}}\) are \( - \root 4 \of {3}\) (double), \(\frac{1-\sqrt{2}i}{\root 4 \of {27}}\) and \(\frac{1+\sqrt{2}i}{\root 4 \of {27}}\),

  • \(\frac{4i}{\root 4 \of {27}}\) are \( \root 4 \of {3}i\) (double), \(\frac{ -\sqrt{2}-i}{\root 4 \of {27}}\) and \(\frac{\sqrt{2}-i}{\root 4 \of {27}}\),

  • \(-\frac{4i}{\root 4 \of {27}}\) are \( -\root 4 \of {3}i\) (double), \(\frac{\sqrt{2}+i}{\root 4 \of {27}}\) and \(\frac{-\sqrt{2}+i}{\root 4 \of {27}}\).

Since f is proper, we compute by the adjunction formula that

$$\begin{aligned} R{\mathcal {H}}om_{{\mathcal {D}}^{\mathrm {an}} }\left( \left( \int _f {\mathcal {O}}\right) ^{\mathrm {an}} ,{\mathcal {O}}^{\mathrm {an}}\right) \simeq \mathrm{R}f^{\mathrm {an}}_{*}R{\mathcal {H}}om_{{\mathcal {D}}^{\mathrm {an}} } \left( {\mathcal {O}}^{\mathrm {an}} ,f^{\dagger }{\mathcal {O}}^{\mathrm {an}}\right) \simeq \mathrm{R}f^{\mathrm {an}}_{*}{\mathbb {C}}. \end{aligned}$$

Since f is semismall, \(\mathrm{R}f_{*} {\mathbb {C}}[1]\in \mathrm{Perv}({\mathbb {C}}_{{\mathbb {A}}^1})\) is a perverse sheaf (cf. [8]). Outside of \(\Sigma \), f is a covering of degree 4, therefore \(\mathrm{R}f_{*} {\mathbb {C}}[1]\in \mathrm{Perv}_{\Sigma }({\mathbb {C}}_{{\mathbb {A}}^1})\). By the regular Riemann–Hilbert correspondence

$$\begin{aligned} {\mathcal {S}}ol(\bullet )[\dim X] {:=} R{\mathcal {H}}om_{{\mathcal {D}}_X^{\mathrm {an}}}\left( \left( \bullet \right) ^{\mathrm {an}}, {\mathcal {O}}^{\mathrm {an}}_X\right) \left[ \dim X\right] {:} \mathrm{Mod}_{\mathrm {rh}}\left( {\mathcal {D}}_X\right) {{\mathop {\longrightarrow }\limits ^{\simeq }}} \mathrm{Perv}({\mathbb {C}}_{X^{\mathrm {an}}}), \end{aligned}$$

we associate to \(H^0 (\int _f {\mathcal {O}})\) the perverse sheaf \(F :=\mathrm{R}f_{*}{\mathbb {C}}[1]\).

We fix \(\alpha = e^{\frac{\pi i}{8}}\in {\mathbb {A}}^1,\ \beta = e^{\frac{3 \pi i}{8}}\in \left( {\mathbb {A}}^1\right) ^{\vee }\), such that \(\mathfrak {R}(\langle \alpha , \beta \rangle )=0, \ \mathfrak {I}(\langle \alpha , \beta \rangle )=1\). This induces the following order on \(\Sigma \) (cf. [6, Sect. 4]):

$$\begin{aligned} \sigma _1:=\frac{4i}{\root 4 \of {27}}<_{\beta } \ \sigma _2:=-\frac{4}{\root 4 \of {27}}<_{\beta } \ \sigma _3:=\frac{4}{\root 4 \of {27}} <_{\beta } \ \sigma _4:=-\frac{4i}{\root 4 \of {27}}. \end{aligned}$$

In Fig. 4, the \(\sigma _i\) are depicted in the following colors:

\(\bullet \) : green,   \(\bullet \) : red,   \(\bullet \) : purple,    \(\bullet \) : orange.

Fig. 2
figure 2

LHS: \(\{ x \mid \mathfrak {R}(f(x))\ge 0 \}\), RHS: \(\{ x \mid \mathfrak {I}(f(x))\ge 0 \}\)

Fig. 3
figure 3

Preimage of the imaginary (resp. real) axis in blue (resp. red) color

Fig. 4
figure 4

Lines passing through \(\sigma _i\) with phase \(\frac{\pi }{8}\)

The blue area in Fig. 2 shows where f has real (resp. imaginary) part greater than or equal to 0. In Fig. 3, the preimage of the imaginary (resp. real) axis under f is plotted in blue (resp. red) color. We consider lines passing through the singular values with phase \(\frac{\pi }{8}\), as depicted in Fig. 4. The preimages of these lines are plotted in Fig. 5. We fix a base point e with \(\mathfrak {R}(e) > \mathfrak {R}\left( \sigma _i\right) \) for all i and denote its preimages by \(e_1,e_2,e_3,e_4,\) as depicted in Fig. 6. In the following, we adopt the notation of [6, Sect. 4]. The nearby and global nearby cycles of F are given by 

$$\begin{aligned} \Psi _{\sigma _i}(F)&:=\mathrm{R}\Gamma _c\left( {\mathbb {A}}^1;{\mathbb {C}}_{\ell _{\sigma _i}^{\times }}\otimes F\right) \simeq H^0\mathrm{R}\Gamma _c \left( \ell _{\sigma _i}^{\times };F\right) \cong \bigoplus _{ e_j \in f^{-1}(e) } {\mathbb {C}}_{e_j} \cong {\mathbb {C}}^4,\\ \Psi (F)&:=\mathrm{R}\Gamma _c\left( {\mathbb {A}}^1;{\mathbb {C}}_{{{\mathbb {A}}^1\setminus \ell _{\Sigma }}}\otimes F\right) [1] \simeq \Psi _{\sigma _i}(F) \cong {\mathbb {C}}^4. \end{aligned}$$

Furthermore, we fix isomorphisms \(i_{\sigma _i}^{-1}F[-1] \cong \bigoplus _{ \sigma _i^j \in f^{-1}\left( \sigma _i\right) } {\mathbb {C}}_{\sigma _i^j} \cong {\mathbb {C}}^3.\)

The exponential components at \(\infty \) of the Fourier–Laplace transform of \(H^0(\int _f {\mathcal {O}})\) are known to be of linear type with coefficients given by the \(\sigma _i\in \Sigma \). The Stokes rays are therefore given by 

$$\begin{aligned} \left\{ 0,\pm \frac{\pi }{4},\pm \frac{\pi }{2},\pm \frac{3\pi }{4},\pi \right\} . \end{aligned}$$

We consider loops \(\gamma _{\sigma _i}\), starting at e and running around the singular value \(\sigma _i\) in counterclockwise orientation,Footnote 1 as depicted in Fig. 6. We denote by \(\gamma _{\sigma _i}^j\) the preimage of \(\gamma _{\sigma _i}\) starting at \(e_j\), \(j=1,2,3,4\). The figure constitutes a rough drawing of the preimages of \(\gamma _{\sigma _i}\). By taking into account the preimages of the different segments of the axes and the intersections of \(\gamma _{\sigma _i}\) with them, one recovers the \(\gamma _{\sigma _i}^j\) as depicted in the figure. From Fig. 6 we read, in the ordered basis \(e_1,e_2,e_3,e_4\), the monodromies

$$\begin{aligned} T_{\sigma _1} = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix}, \quad T_{\sigma _2} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix},\\ T_{\sigma _3} = \begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{pmatrix},\quad T_{\sigma _4} = \begin{pmatrix} 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 1&{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix}. \end{aligned}$$
Fig. 5
figure 5

Preimages under f

In order to obtain the maps \(b_{\sigma _i}\), we consider the half-lines . We denote their preimages under f by \(\{ \ell _{\sigma _i}^j \}_{j=1,2,3,4}\), depending on which \(\gamma _{\sigma _i}^j\) they intersect. We label the preimages of \(\sigma _i\) by \(\sigma _i^1,\sigma _i^2,\sigma _i^3\), as depicted in Fig. 7. By the derivation of the short exact sequence of quivers [6, (7.1.3)] and passing to Borel–Moore homology as described in [6, Lemma 5.3.1.(i)], \(b_{\sigma _i}\) is induced from the corresponding boundary value map from \(\ell _{\sigma _i}\) to its origin \(\sigma _i\). Therefore, \(b_{\sigma _i}\) encodes which lift of \(\ell _{\sigma _i}\) starts at which preimage of \(\sigma _i\). Namely, from Fig. 7 we read the following:

::

\(\ell _{\sigma _1}^1 \mapsto \sigma _1^1, \ \ell _{\sigma _1}^2 \mapsto \sigma _1^1, \ \ell _{\sigma _1}^3 \mapsto \sigma _1^2, \ \ell _{\sigma _1}^4 \mapsto \sigma _1^3\).

Therefore, \(b_{\sigma _1}\) is the transpose of \(\begin{pmatrix} 1 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix}\).

::

\(\ell _{\sigma _2}^1 \mapsto \sigma _2^3, \ \ell _{\sigma _2}^2 \mapsto \sigma _2^1, \ \ell _{\sigma _2}^3 \mapsto \sigma _2^1, \ \ell _{\sigma _2}^4 \mapsto \sigma _2^2\).

Therefore, \(b_{\sigma _2}\) is the transpose of \(\begin{pmatrix} 0 &{}\quad 1 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{pmatrix}\).

::

\(\ell _{\sigma _3}^1 \mapsto \sigma _3^1, \ \ell _{\sigma _3}^2 \mapsto \sigma _3^2, \ \ell _{\sigma _3}^3 \mapsto \sigma _3^3, \ \ell _{\sigma _3}^4 \mapsto \sigma _3^1\).

Therefore, \(b_{\sigma _3}\) is the transpose of \(\begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1&{}\quad 0\\ \end{pmatrix}\).

::

\(\ell _{\sigma _4}^1 \mapsto \sigma _4^1, \ \ell _{\sigma _4}^2 \mapsto \sigma _4^3, \ \ell _{\sigma _4}^3 \mapsto \sigma _4^1, \ \ell _{\sigma _4}^4 \mapsto \sigma _4^2\).

Therefore, \(b_{\sigma _4}\) is the transpose of \(\begin{pmatrix} 1 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ \end{pmatrix}\).

We obtain, in the ordered bases \(\sigma _i^1,\sigma _i^2,\sigma _i^3\) and \(\ell _{\sigma _i}^1,\ell _{\sigma _i}^2,\ell _{\sigma _i}^3,\ell _{\sigma _i}^4\) each:

$$\begin{aligned} b_{\sigma _1} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix}, \quad b_{\sigma _2} = \begin{pmatrix} 0 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0\\ \end{pmatrix},\\ b_{\sigma _3} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0\\ 0&{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0&{}\quad 1\\ 1 &{}\quad 0 &{}\quad 0\\ \end{pmatrix},\quad b_{\sigma _4} = \begin{pmatrix} 1&{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 \\ 1 &{}\quad 0 &{}\quad 0\\ 0&{}\quad 1 &{}\quad 0\\ \end{pmatrix}. \end{aligned}$$

Denote by \(u_i:=u_{\sigma _i}\), \(v_i:=v_{\sigma _i}\), \(T_i:=T_{\sigma _i}\) and \(\Phi _i :=\Phi _{\sigma _i}\). As described in [6, Sect. 7], we obtain

figure i

as the cokernels of the following diagrams:

figure j

We identify the cokernels of \(b_{\sigma _i}\) in the following way:

  • coker\((b_{\sigma _1}) \simeq {\mathbb {C}} \) via \(\left[ \begin{pmatrix} a_1\\ a_2\\ a_3\\ a_4 \end{pmatrix} \right] = \left[ \begin{pmatrix} a_1-a_2\\ 0\\ 0\\ 0 \end{pmatrix} \right] ,\)

  • coker\((b_{\sigma _2}) \simeq {\mathbb {C}} \) via \(\left[ \begin{pmatrix} a_1\\ a_2\\ a_3\\ a_4 \end{pmatrix} \right] = \left[ \begin{pmatrix} 0\\ a_2-a_3\\ 0\\ 0 \end{pmatrix} \right] ,\)

  • coker\((b_{\sigma _3}) \simeq {\mathbb {C}} \) via \(\left[ \begin{pmatrix} a_1\\ a_2\\ a_3\\ a_4 \end{pmatrix} \right] = \left[ \begin{pmatrix} a_1-a_4\\ 0\\ 0\\ 0 \end{pmatrix} \right] ,\)

  • coker\((b_{\sigma _4}) \simeq {\mathbb {C}} \) via \(\left[ \begin{pmatrix} a_1\\ a_2\\ a_3\\ a_4 \end{pmatrix} \right] = \left[ \begin{pmatrix} a_1-a_3\\ 0\\ 0\\ 0 \end{pmatrix} \right] .\)

We obtain that

figure k

\(\simeq \)

figure l

where

$$\begin{aligned} u_1= \begin{pmatrix} 1 &{}\quad -1 &{}\quad 0 &{}\quad 0\\ \end{pmatrix}, \quad u_2=\begin{pmatrix} 0 &{}\quad 1 &{}\quad -1 &{}\quad 0\\ \end{pmatrix}, \\ u_3=\begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad -1\\ \end{pmatrix}, \quad u_4=\begin{pmatrix} 1 &{}\quad 0 &{}\quad -1 &{}\quad 0\\ \end{pmatrix}, \end{aligned}$$

and \(v_i=u_i^{\mathrm {t}}\). By [6, Theorem 5.2.2], we obtain the following

Fig. 6
figure 6

\(\ell _{\sigma _i}\) and their preimages under f

Fig. 7
figure 7

\(\ell _{\sigma _i}\) and their preimages under f

Theorem

Under the choices made, the Stokes matrices of the Fourier–Laplace transform of \(H^0(\int _f {\mathcal {O}})\) at \(\infty \) are given as

$$\begin{aligned} S_{\beta }&= \begin{pmatrix} 1 &{}\quad u_1v_2&{}\quad u_1v_3&{}\quad u_1v_4\\ 0 &{}\quad 1&{}\quad u_2v_3&{}\quad u_2v_4\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad u_3v_4\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix} = \begin{pmatrix} 1 &{}\quad -1&{}\quad 1 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix},\\ S_{-\beta }&= \begin{pmatrix} {\mathbb {T}}_{1} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ -u_2v_1 &{}\quad {\mathbb {T}}_2 &{}\quad 0 &{}\quad 0\\ -u_3v_1 &{}\quad -u_3v_2 &{}\quad {\mathbb {T}}_3 &{}\quad 0\\ -u_4v_1 &{}\quad -u_4v_2 &{}\quad -u_4v_3 &{}\quad {\mathbb {T}}_4\\ \end{pmatrix} = \begin{pmatrix} -1 &{}\quad 0 &{}\quad 0&{}\quad 0\\ 1 &{}\quad -1 &{}\quad 0 &{}\quad 0\\ -1 &{}\quad 0 &{}\quad -1 &{}\quad 0\\ -1 &{}\quad -1 &{}\quad -1 &{}\quad -1 \end{pmatrix} = -S_{\beta }^{\mathrm {t}}, \end{aligned}$$

where \({\mathbb {T}}_i :=1-u_iv_i\). \(S_{\pm \beta }\) describes crossing \(h_{\pm \beta }\) from \(H_{\alpha }\) to \(H_{-\alpha }\), where

$$\begin{aligned} H_{\alpha }=&\left\{ w \mid \arg (w) \in \left[ - \frac{5 \pi }{8}, \frac{ 3\pi }{8} \right] \right\} ,\ \\ H_{-\alpha }=&\left\{ w \in \mid \arg (w) \in \left[ \frac{ 3 \pi }{8}, \frac{11 \pi }{8} \right] \right\} \subset \left( {\mathbb {A}}^1\right) ^{\vee } \end{aligned}$$

denote the closed sectors at \(\infty \) and \(h_{\pm \beta }= \pm {\mathbb {R}}_{>0} \beta \subset \left( {\mathbb {A}}^1\right) ^{\vee }\), such that \( H_{\alpha }\cap H_{-\alpha } = h_{\beta } \cup h_{-\beta }\). \(\square \)

4 Quantum connection and Dubrovin’s conjecture

4.1 Quantum connection

The quantum connection of a Fano variety (resp. an orbifold) X is a connection on the trivial vector bundle over \({\mathbb {P}}^1\) with fiber \(H^*(X, {\mathbb {C}})\) (resp. \(H_{\mathrm {orb}}^*(X, {\mathbb {C}})\)), where z denotes the standard inhomogeneous coordinate at \(\infty \). By [11, (2.2.1)], the quantum connection is the connection given by

$$\begin{aligned} \nabla _{z \partial _z} = z \frac{\partial }{\partial z} - \frac{1}{z} \left( -K_X \circ \right) + \mu , \end{aligned}$$

where the first term on the right hand side is ordinary differentiation, the second one is pointwise quantum multiplication by \((-K_X)\), and the third one is the grading operator

$$\begin{aligned} \mu (a) :=\left( \frac{i}{2} - \frac{\dim X}{2} \right) a \quad \mathrm {for}\ a \in H^i(X, {\mathbb {C}}). \end{aligned}$$

The quantum connection is regular singular at \(z=\infty \) and irregular singular at \(\text{ z }=0\).

For the weighted projective line \({\mathbb {P}}(a,b)\), the orbifold cohomology ring is given by (cf. [16, Example 3.20])

$$\begin{aligned} H^{*}_{\mathrm {orb}}({\mathbb {P}}(a,b),{\mathbb {C}} ) = {\mathbb {C}} \left[ x,y,\xi \right] / \langle xy, ax^{\frac{a}{d}}-by^{\frac{b}{d}}\xi ^{n-m},\xi ^d-1 \rangle , \end{aligned}$$

where \(d=\gcd (a,b)\) and \(m,n\in {\mathbb {Z}}\) such that \(am+bn=d\). The grading is given as follows (cf. [1, Sect. 9]): \(\deg x = \frac{1}{A}\), \(\deg y = \frac{1}{B}\), \(\deg \xi = 0\), where \(A=\frac{a}{d} \), \(B=\frac{b}{d} \). Quantum multiplicationFootnote 2 is computed in

$$\begin{aligned} QH_{\mathrm {orb}}^{*} = {\mathbb {C}} \left[ x,y,\xi \right] / \langle xy-1, ax^{\frac{a}{d}}-by^{\frac{b}{d}}\xi ^{n-m},\xi ^d-1 \rangle . \end{aligned}$$

For \(\gcd (a,b)=1\), \(-K_{{\mathbb {P}}(a,b)}\) is given by the element \([x^a+y^b]\in H^1_{\mathrm {orb}}({\mathbb {P}}(a,b),{\mathbb {C}})\). Taking into account that the grading is scaled by 2, the grading operator is defined by \(\mu (a)= \left( i - \frac{\dim X}{2}\right) a\) for \(a\in H^i_{\mathrm {orb}}(X,{\mathbb {C}})\).

We obtain the quantum connection of \({\mathbb {P}}(1,3)\) as follows.

$$\begin{aligned} H^{*}_{\mathrm {orb}}({\mathbb {P}}(1,3),{\mathbb {C}} ) = {\mathbb {C}} \left[ x,y\right] / \langle xy,x-3y^3 \rangle \end{aligned}$$

with grading given by \(\deg x=1,\ \deg y=\frac{1}{3}\). A basis over \({\mathbb {C}} \) is given by \(1,y,y^2,y^3\). Quantum multiplication by \(-K_{{\mathbb {P}}(1,3)}=\left[ x+y^3\right] =\left[ 4y^3\right] \) in this basis is given by the matrix

$$\begin{aligned} \begin{pmatrix} 0 &{}\quad \frac{4}{3} &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad \frac{4}{3} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{4}{3}\\ 4 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} . \end{aligned}$$

The grading \(\mu \) is given by the matrix

$$\begin{aligned} \begin{pmatrix} -\frac{1}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0&{}\quad -\frac{1}{6} &{}\quad 0 &{}\quad 0\\ 0&{}\quad 0 &{}\quad \frac{1}{6} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1}{2} \end{pmatrix}. \end{aligned}$$

Therefore, the quantum connection of \({\mathbb {P}}(1,3)\) is given by

$$\begin{aligned} \nabla _{z \partial _z} = z \partial _z - \frac{1}{z} \begin{pmatrix} 0 &{}\quad \frac{4}{3} &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad \frac{4}{3} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{4}{3}\\ 4 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0&{}\quad -\frac{1}{6} &{}\quad 0 &{}\quad 0\\ 0&{}\quad 0 &{}\quad \frac{1}{6} &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1}{2} \end{pmatrix}. \end{aligned}$$
(2)

Observation

By the gauge transformation \(h=\text {diag}(\theta ^{-\frac{1}{2}},\theta ^{-\frac{1}{2}},\theta ^{-\frac{1}{2}},\theta ^{-\frac{1}{2}})\), which subtracts \(\frac{1}{2}\) on the diagonal entries, and passing to \(-\theta \), connection (1) arising from the Landau–Ginzburg model is exactly the quantum connection (2) of \({\mathbb {P}}(1,3)\), as predicted by mirror symmetry.

4.2 Dubrovin’s conjecture

Let X be a Fano variety (or an orbifold), such that the bounded derived category \(D^b(\mathrm{Coh}(X))\) of coherent sheaves on X admits a full exceptional collection \(\langle E_1,\ldots , E_n \rangle \), where the collection \(\langle E_1,\ldots , E_n\rangle \) is called

  • exceptional if \(R{\mathcal {H}}om(E_i,E_i)={\mathbb {C}} \) for all i and \(R{\mathcal {H}}om(E_i,E_j)=0\) for \(i>j\),

  • full if \(D^b(\mathrm{Coh}(X))\) is the smallest full triangulated subcategory of \(D^b(\mathrm{Coh}(X))\) containing \(E_1,\ldots ,E_n\).

In [10], Dubrovin conjectured that, under appropriate choices, the Stokes matrix of the quantum connection of X equals the Gram matrix of the Euler–Poincaré pairing with respect to some full exceptional collection—modulo some action of the braid group, sign changes and permutations (cf. [4, Sect. 2.3]). Then the second Stokes matrix is the transpose of the first one. The Euler–Poincaré pairing is given by the bilinear form

$$\begin{aligned} \chi (E,F) :=\sum _k (-1)^k \dim _{{\mathbb {C}}} \mathrm {Ext}^k(E,F), \quad E,F \in D^b(\mathrm{Coh}(X)). \end{aligned}$$

The Gram matrix of \(\chi \) with respect to a full exceptional collection is upper triangular with ones on the diagonal.

For \({\mathbb {P}}(a,b)\), \(\langle {\mathcal {O}},{\mathcal {O}}(1), \ldots , {\mathcal {O}}(a+b-1)\rangle \) is a full exceptional collection of \(D^b(\mathrm{Coh}({\mathbb {P}}(a,b)))\) (cf. [2, Theorem 2.12]). Following [3, Theorem 4.1], the cohomology of the twisting sheaves for \(k\in {\mathbb {Z}}\) is given by

  • \(H^0\left( {\mathbb {P}}(a,b),{\mathcal {O}}(k)\right) = \bigoplus _{(m,n)\in I_0} {\mathbb {C}} x^my^n, \) where

    $$\begin{aligned} I_0 = \left\{ (m,n) \in {\mathbb {Z}}_{\ge 0} \times {\mathbb {Z}}_{\ge 0} \mid am+bn=k \right\} , \end{aligned}$$
  • \(H^1 \left( {\mathbb {P}}(a,b),{\mathcal {O}}(k) \right) = \bigoplus _{(m,n) \in I_1} {\mathbb {C}} x^my^n, \) where

    $$\begin{aligned} I_1 = \left\{ (m,n)\in {\mathbb {Z}}_{<0} \times {\mathbb {Z}}_{<0} \mid am+bn=k \right\} , \end{aligned}$$
  • \(H^i \left( {\mathbb {P}}(a,b),{\mathcal {O}}(k) \right) = 0 \) for all \(i\ge 2\).

We only need to compute \(\mathrm {Ext}^k({\mathcal {O}}(i),{\mathcal {O}}(j))\) for \(i<j\), which is given by \(H^k\left( {\mathcal {O}}\left( j-i\right) \right) \) (cf. [17, Lemma 4.5]). Therefore, the zeroth cohomologies of the twisting sheaves \({\mathcal {O}}\left( j-i\right) \) are the only ones that contribute to the Gram matrix of \(\chi \). For \({\mathbb {P}}(1,3)\) we obtain the cohomology groups

$$\begin{aligned} H^0({\mathcal {O}}(1))\cong {\mathbb {C}},\ H^0({\mathcal {O}}(2))\cong {\mathbb {C}},\ \ H^0({\mathcal {O}}(3))\cong {\mathbb {C}}^2 \end{aligned}$$

and therefore the Gram matrix of the Euler–Poincaré pairing on \(D^b(\mathrm{Coh}({\mathbb {P}}(1,3)))\) with respect to the full exceptional collection is given by

$$\begin{aligned} S_{\text {Gram}}= \begin{pmatrix} 1 &{}\quad 1 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}. \end{aligned}$$
(3)

4.3 Comparison of the Gram and Stokes matrix

Mirror symmetry relates the Laurent polynomial \(f=x + x^{-3}\) to the weighted projective line \({\mathbb {P}}(1,3)\). The pair \(({\mathbb {G}}_m, f=x + x^{-3})\) is a Landau–Ginzburg model of the weighted projective line \({\mathbb {P}}(1,3)\). According to Dubrovin’s conjecture, the Stokes matrix of the quantum connection of \({\mathbb {P}}(1,3)\) equals the Gram matrix of the Euler–Poincaré pairing with respect to some full exceptional collection of \(D^b(\mathrm{Coh}({\mathbb {P}}(1,3)))\). Note that there is a natural action of the braid group on the Stokes matrix reflecting variations in the choices involved to determine the Stokes matrix (cf. [13]). In our case, we have to consider the braid group on four strands, namely

$$\begin{aligned} B_4 = \langle \beta _1, \beta _2, \beta _3 \mid \beta _1\beta _3\beta _1=\beta _3\beta _1\beta _3,\ \beta _1\beta _2\beta _1= \beta _2\beta _1\beta _2,\ \beta _2\beta _3\beta _2=\beta _3\beta _2\beta _3 \rangle . \end{aligned}$$

Proposition

\(S_{\text {Gram}}\) and \(S_{\beta }\) correspond to each other under the action of the elementary braid \(\beta _1\in B_4\).

Proof

We computed that the Gram matrix of \(\chi \) with respect to the full exceptional collection \({\mathcal {E}} \) is given by (3). Following [13, Sect. 6], the braid \(\beta _1\) acts on the Gram matrix as

where \(A^{\beta _1}\left( S_{\text {Gram}}\right) \) is given by

$$\begin{aligned} A^{\beta _1}(S_{\text {Gram}}) = \begin{pmatrix} 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad -1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix} . \end{aligned}$$

We obtain that

$$\begin{aligned} S_{\text {Gram}}^{\beta _1} = \begin{pmatrix} 1 &{}\quad -1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix} =S_{\beta }. \end{aligned}$$

\(\square \)

Remark

\(S_{\text {Gram}}^{\beta _1}=S_{\beta }\) is the Gram matrix of the Euler–Poincaré pairing with respect to the right mutation \({\mathbb {R}}_1{\mathcal {E}}\) of the full exceptional collection \({\mathcal {E}}\) (cf. [4, Proposition 13.1]). In our topological computations, the action of the braid \(\beta _1\in B_4\) should correspond to a counterclockwise rotation of \(\beta \).

5 Non-coprime parameters

In this section, we consider the weighted projective line \({\mathbb {P}}(2,2)\) as an example for the case of non-coprime parameters. The topological computation of the Stokes matrices of the quantum connection at \(\infty \) requires some adaptions.

A Landau–Ginzburg model of \({\mathbb {P}} (2,2)\) is given by the curve \(\left\{ x^2y^2=1 \right\} \subset {\mathbb {G}}_m^{2}\) together with the potential \(f=x+y\). This splits into two disjoint components \(U_1 :=\{xy+1=0 \} \) and \(U_2 :=\{ xy -1 =0 \}\). f restricts to \(f_1=x-x^{-1}\) on \(U_1\) and to \(f_2=x+x^{-1}\) on \(U_2\), where we identified \(y=-x^{-1}\) and \(y=x^{-1}\), respectively. The blue area in Fig. 8 shows where \(f_1\) has real (resp. imaginary) part greater than or equal to 0. The blue area in Fig. 9 shows where \(f_2\) has real (resp. imaginary) part greater than or equal to 0. In Fig. 10, the preimages of the real (resp. imaginary) axis under \(f_1\) and \(f_2\) are plotted.

f has singular fibers at \(\Sigma :=\{ \pm 2 i,\pm 2\}\). For our topological computations, we consider the perverse sheaf \(F=\mathrm{R}f_{*}{\mathbb {C}}[1] \in \mathrm{Perv}_{\Sigma }\left( {\mathbb {A}}^1\right) \). The exponential components at \(\infty \) of the Fourier–Sato transform of F are of linear type, with coefficients given by the \(\sigma _i\in \Sigma \). The Stokes rays are therefore given by \(\left\{ 0,\pm \frac{\pi }{4},\pm \frac{\pi }{2},\pm \frac{3\pi }{4},\pi \right\} \).

  • \(f^{-1}(2)=\{ (1,1)\in U_2, (1-\sqrt{2},1+\sqrt{2}) \in U_1, (1+\sqrt{2},1-\sqrt{2})\in U_1 \}\), (1, 1) being the double inverse image,

  • \(f^{-1}(-2)= \{ (-1,-1)\in U_2, (-1-\sqrt{2},-1+\sqrt{2})\in U_1, (-1+\sqrt{2},-1-\sqrt{2})\in U_1 \}\), \((-1,-1)\) being the double inverse image,

  • \(f^{-1}(2i)=\{ (i,i)\in U_1, (i+\sqrt{2}i,i-\sqrt{2}i)\in U_2, (i-\sqrt{2}i,i+\sqrt{2}i)\in U_2 \}\), (ii) being the double inverse image,

  • \(f^{-1}(-2)= \{ (-i,-i)\in U_1, (-i+\sqrt{2}i,-i-\sqrt{2}i), (-i-\sqrt{2}i,-i+\sqrt{2}i)\in U_2 \}\), \((-i,-i)\) being the double inverse image.

Fig. 8
figure 8

LHS: \(\left\{ x \mid \mathfrak {R}\left( f_1(x)\right) \ge 0 \right\} \), RHS: \(\left\{ x \mid \mathfrak {I}\left( f_1(x)\right) \ge 0 \right\} \)

Fig. 9
figure 9

LHS: \(\{ x \mid \mathfrak {R}(f_2(x))\ge 0 \}\), RHS: \(\{ x \mid \mathfrak {I}(f_2(x))\ge 0 \}\)

Fig. 10
figure 10

Preimage of the real (resp. imaginary) axis in blue (resp. red) color under \(f_1\) (LHS) and \(f_2\) (RHS)

We choose \(\alpha = e^{3\pi i/8},\ \beta = e^{9 \pi i /8}\). This induces the following order on \(\Sigma \):

$$\begin{aligned} {\sigma _1} :=2<_{\beta } {\sigma _2} :=-2i<_{\beta } {\sigma _3} :=2i <_{\beta } {\sigma _4} :=-2. \end{aligned}$$

Denote by \(\ell _{\sigma _i} = \sigma _i + {\mathbb {R}}_{\ge 0} \alpha \). Their preimages are depicted in Figs. 11 and 12.

Fig. 11
figure 11

Preimages under \(f_1\) of lines passing through \(\sigma _2\) and \(\sigma _3\) with phase \(3\pi /8\)

Fig. 12
figure 12

Preimages under \(f_2\) of lines passing through \(\sigma _1\) and \(\sigma _4\) with phase \(3\pi /8\)

Fig. 13
figure 13

Preimages of \(\gamma _{\sigma _i}\) under \(f_1\) (LHS) and \(f_2\) (RHS)

Fig. 14
figure 14

Preimages of \(\ell _{\sigma _i}\) under \(f_1\) (LHS) and \(f_2\) (RHS)

As in the previous example, only the lifts of \(\gamma _{\sigma _i}\) and \(\ell _{\sigma _i}\) around the double preimages of \(\sigma _i\), which we denote by \(\sigma _i^1\), contribute to the monodromy and the cokernel of \(b_{\sigma _i}\). Therefore, in our figures, we restricted to this information.

From Fig. 13 we read the monodromies in the ordered basis \(e_1,e_2,e_3,e_4\) to be

$$\begin{aligned} T_{\sigma _1} = \begin{pmatrix} 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix},\quad T_{\sigma _2} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 \end{pmatrix},\\ T_{\sigma _3} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 \end{pmatrix}, \quad T_{\sigma _4} = \begin{pmatrix} 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}. \end{aligned}$$

Taking into account Fig. 14, we identify the cokernel of 

  • \(b_{\sigma _1}\) with \({\mathbb {C}}\) via \( \left[ \begin{pmatrix} a_1 ,a_2,a_3, a_4 \end{pmatrix}\right] ^{\mathrm {t}}= \left[ \begin{pmatrix} a_1-a_3, 0, 0, 0 \end{pmatrix}\right] ^{\mathrm {t}}\),

  • \(b_{\sigma _2}\) with \({\mathbb {C}}\) via \(\left[ \begin{pmatrix} a_1 ,a_2,a_3,a_4 \end{pmatrix} \right] ^{\mathrm {t}}= \left[ \begin{pmatrix} 0,a_2-a_4,0,0 \end{pmatrix} \right] ^{\mathrm {t}}\),

  • \(b_{\sigma _3}\) with \({\mathbb {C}}\) via \(\left[ \begin{pmatrix} a_1 ,a_2,a_3,a_4 \end{pmatrix} \right] ^{\mathrm {t}}= \left[ \begin{pmatrix} 0,a_2-a_4,0,0 \end{pmatrix} \right] ^{\mathrm {t}}\),

  • \(b_{\sigma _4}\) with \({\mathbb {C}}\) via \(\left[ \begin{pmatrix} a_1 ,a_2,a_3,a_4 \end{pmatrix} \right] ^{\mathrm {t}}= \left[ \begin{pmatrix} a_1-a_3,0,0,0 \end{pmatrix} \right] ^{\mathrm {t}}\).

We therefore obtain

$$\begin{aligned} u_{\sigma _1}=&\begin{pmatrix} 1&\quad 0&\quad -1&\quad 0 \end{pmatrix}=u_{\sigma _4}, \\ u_{\sigma _2} =&\begin{pmatrix} 0&\quad 1&\quad 0&\quad -1 \end{pmatrix} = u_{\sigma _3}, \end{aligned}$$

and \(v_{\sigma _i}=u_{\sigma _i}^{\mathrm {t}}\). In summary, we obtain the following

Theorem

The Stokes matrices of the Fourier–Laplace transform of \(H^0(\int _f {\mathcal {O}})\) in the chosen bases are given by

$$\begin{aligned} S_{\beta } = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 2 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}, \quad S_{-\beta } = -S_{\beta }^{\mathrm {t}}. \end{aligned}$$
(4)

\(S_{\pm \beta }\) describes passing \(\pm \beta {\mathbb {R}}_{>0}\subset \left( {\mathbb {A}}^1\right) ^{\vee }\setminus \{ 0 \}\) from \(H_{\alpha }\) to \(H_{-\alpha }\), where

$$\begin{aligned} H_{\alpha }= & {} \left\{ w\mid \arg (w) \in \left[ -\frac{7\pi }{8},\frac{\pi }{8}\right] \right\} ,\\ \ H_{-\alpha }= & {} \left\{ w \mid \arg (w) \in \left[ \frac{\pi }{8},\frac{9\pi }{8}\right] \right\} \subset \left( {\mathbb {A}}^1\right) ^{\vee }\setminus \{ 0 \} . \end{aligned}$$

\(\square \)

In the non-coprime case \(\gcd (a,b)\ne 1\), the computation of the orbifold cohomology of \({\mathbb {P}}(a,b)\) is more subtle. We refer to [16] for precise formulae and the correspondence of the quantum connection and the Fourier–Laplace transform of the Gauß–Manin connection of the Landau–Ginzburg model.

For \({\mathbb {P}}(2,2)\) we get the cohomology groups

$$\begin{aligned} H^0({\mathcal {O}}(1))\cong H^0({\mathcal {O}}(3))\cong 0,\ H^0({\mathcal {O}}(2))\cong {\mathbb {C}}^2 \end{aligned}$$

and therefore the Gram matrix of the Euler–Poincaré pairing on \(D^b(\mathrm{Coh}({\mathbb {P}}(2,2)))\) with respect to \({\mathcal {E}} =\langle {\mathcal {O}},{\mathcal {O}}(1),{\mathcal {O}}(2),{\mathcal {O}}(3)\rangle \) is given by

$$\begin{aligned} S_{\text {Gram}}= \begin{pmatrix} 1 &{}\quad 0 &{}\quad 2 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 2\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \end{pmatrix}. \end{aligned}$$
(5)

Proposition

\(S_{\text {Gram}}\) and \(S_{\beta }\) correspond to each other under the action of \(S_4\).

Proof

By the permutation 

$$\begin{aligned} P=\begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0&{}\quad 0 &{}\quad 1 &{}\quad 0 \end{pmatrix}\in S_4, \end{aligned}$$

acting on the Gram matrix \(S_{\text {Gram}}\) as \(P\cdot S_{\text {Gram}} \cdot P^{-1}\) (cf. [13, Sect. 6.c]), we find that the Gram matrix \(S_{\text {Gram}}\) (5) is transformed into the topologically computed Stokes matrix \(S_{\beta }\) (4). \(\square \)