Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology


In this paper, we show that the motive of the quaternionic Grassmannian \(HP^n\) (as defined by I. Panin and C. Walter) splits in the category of effective MW-motives (as defined by B. Calmès, F. Déglise and J. Fasel). Moreover, we extend this result to an arbitrary symplectic bundle, obtaining the so-called quaternionic projective bundle theorem. Finally, we give the Gysin triangle in MW-motivic cohomology.

This is a preview of subscription content, access via your institution.


  1. 1.

    Asok, A., Fasel, J.: Comparing Euler classes. Q. J. Math. 67(4), 603–635 (2016)

    MathSciNet  Google Scholar 

  2. 2.

    Ananyevskiy, A.: The special linear version of the projective bundle theorem. Compositio Math. 151(3), 461–501 (2015)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Ananyevskiy, A.: On the the relation of special linear algebraic cobordism to Witt groups. Homology Homotopy Appl. 18(1), 205–230 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ananyevskiy, A.: \(SL\)-oriented cohomology theories. arXiv:1901.01597v2 (2019)

  5. 5.

    Cisinski, D.C., Déglise, F.: Local and stable homological algebra in Grothendieck Abelian categories. Homology Homotopy Appl. 11(1), 219–260 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cisinski, D.C., Déglise, F.: Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics, Springer (2019)

  7. 7.

    Calmès, B., Fasel, J.: The category of finite Chow–Witt correspondences. arXiv:1412.2989 (2014)

  8. 8.

    Déglise, F.: Around the Gysin Triangle I, Regulator. Contemporary Mathematics, pp. 77–116. The American Mathematical Society, Providence (2012)

    Google Scholar 

  9. 9.

    Déglise, F.: Finite correspondences and transfers over a regular base. Algebraic Cycles and Motives. London Math. Soc. Lecture Note Ser., vol. 343, pp. 138–205. Cambridge university press, Cambridge (2007)

    Google Scholar 

  10. 10.

    Déglise, F., Fasel, J.: MW-Motivic complexes. arXiv:1708.06095 (2017)

  11. 11.

    Fasel, J.: Groupes de Chow–Witt Mém. Soc. Math. Fr. (N.S.) 113, viii+197 (2008)

    MathSciNet  Google Scholar 

  12. 12.

    Fasel, J.: The projective bundle theorem for \(I^j\)-cohomology. J. K-Theory 11(2), 413–464 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Fasel, J., Østvær, P.A.: A cancellation theorem for Milnor–Witt correspondences. arXiv:1708.06098 (2016)

  14. 14.

    Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)

    Google Scholar 

  15. 15.

    J. Hornbostel and M. Wendt, Chow–Witt rings of classifying spaces for symplectic and special linear groups. arXiv:1703.05362v3

  16. 16.

    Kleiman, S.L.: Geometry on Grassmannians and applications to splitting bundles and smoothing cycles. Publ. Math. IHES 36, 281–297 (1969)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Krause, H.: Localization theory for triangulated categories. In: Holm, T., Jørgensen, P., Rouquier, R. (eds.) Triangulated categories, 161–235, London Math. Soc. Lecture Note Ser., vol. 375. Cambridge Univ. Press, Cambridge (2010)

    Google Scholar 

  18. 18.

    Kleiman, S.L., Laksov, D.: Schubert calculus. Am. Math. Mon. 79(10), 1061–1082 (1972)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton (1980)

    Google Scholar 

  20. 20.

    Morel, F.: \({\mathbb{A}}^1\)-Algebraic Topology over a Field. Lecture Notes in Math. Springer, New York (2012)

    Google Scholar 

  21. 21.

    Morel, F., Voevodsky, V.: \({\mathbb{A}}^1\)-Homotopy theory of schemes. Publ. Math. IHES 90, 45–143 (1999)

    Article  Google Scholar 

  22. 22.

    Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge (2006)

    Google Scholar 

  23. 23.

    Panin, I.: Push-forwards in oriented cohomology theories of algebraic varieties: II. www.math.uiuc.edu/K-theory/0619/pushsep.pdf

  24. 24.

    Panin, I.: Oriented cohomology theories of algebraic varieties. K-Theory 30, 265–314 (2003)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Panin, I., Smirnov, A.: Riemann–Roch theorems for oriented cohomology. In: Greenlees, J.P.C. (ed.) Axiomatic, Enriched and Motivic Homotopy Theory. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 131. Springer, Dordrecht (2004)

    Google Scholar 

  26. 26.

    I. Panin, C. Walter, Quaternionic grassmannians and Pontryagin Classes in algebraic geometry, arXiv:1011.0649 (2010)

  27. 27.

    Shafarevich, I.R.: Basic Algebraic Geometry, 2nd edn. Springer, Berlin (1994)

    Google Scholar 

  28. 28.

    Suslin, A., Voevodsky, V.: Bloch–Kato conjecture and motivic cohomology with finite coefficients. www.math.uiuc.edu/K-theory/0341/susvoenew.pdf

  29. 29.

    Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  30. 30.

    Yang, N.: General motivic cohomology and symplectic orientation. arXiv:1810.12802v1 (2018)

Download references


The author would like to thank his PhD advisor J. Fasel for giving me the basic idea of this article and helping during the subsequent research, and F. Déglise for helpful discussions. The careful work of the referee is also greatly appreciated.

Author information



Corresponding author

Correspondence to Nanjun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by ERC ALKAGE.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, N. Quaternionic projective bundle theorem and Gysin triangle in MW-motivic cohomology. manuscripta math. 164, 39–65 (2021). https://doi.org/10.1007/s00229-019-01171-4

Download citation

Mathematics Subject Classification

  • Primary: 11E81
  • 14F42