Skip to main content

The (cyclic) enhanced nilpotent cone via quiver representations

An Erratum to this article was published on 09 February 2019

This article has been updated

Abstract

The \({{\,\mathrm{GL}\,}}(V)\)-orbits in the enhanced nilpotent cone \(V\times \mathcal {N}\) are (essentially) in bijection with the orbits of a certain parabolic \(P\subseteq {{\,\mathrm{GL}\,}}(V)\) (the mirabolic subgroup) in the nilpotent cone \(\mathcal {N}\). We give a new parameterization of the orbits in the enhanced nilpotent cone, in terms of representations of the underlying quiver. This parameterization generalizes naturally to the enhanced cyclic nilpotent cone. Our parameterizations are different from the previous ones that have appeared in the literature. Explicit translations between the different parametrizations are given.

Change history

  • 09 February 2019

    The article “The (cyclic) enhanced nilpotent cone via quiver representations”, written by Gwyn Bellamy Magdalena Boos, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on December 17, 2018, without open access.

References

  1. 1.

    Achar, P.N., Henderson, A.: Orbit closures in the enhanced nilpotent cone. Adv. Math. 219(1), 27–62 (2008)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 1, Volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2006). (Techniques of representation theory)

  3. 3.

    Bellamy, G., Boos, M.: Semi-simplicity of the category of admissible D-modules. Preprint, arXiv:1709.08986 (2017)

  4. 4.

    Bernstein, J.N.: \(P\)-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case). In: Lie Group Representations, II (College Park, Md., 1982/1983), Volume 1041 of Lecture Notes in Mathematics, pp. 50–102. Springer, Berlin (1984)

  5. 5.

    Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. (2) 28(3), 461–469 (1983)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bongartz, K.: Minimal singularities for representations of Dynkin quivers. Comment. Math. Helv. 69(4), 575–611 (1994)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bongartz, K.: On degenerations and extensions of finite-dimensional modules. Adv. Math. 121(2), 245–287 (1996)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Boos, M.: Finite parabolic conjugation on varieties of nilpotent matrices. Algebr. Represent. Theory 17(6), 1657–1682 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Brüstle, T., de la Peña, J.A., Skowroński, A.: Tame algebras and Tits quadratic forms. Adv. Math. 226(1), 887–951 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    de la Peña, J.A., Skowroński, A.: The Tits forms of tame algebras and their roots. In: Representations of Algebras and Related Topics, EMS Series of Congress Reports, pp. 445–499. European Mathematical Society, Zürich (2011)

  11. 11.

    Drozd, Y.A.: Tame and wild matrix problems. In Representation Theory, II (Proceedings of the Second International Conference, Carleton University, Ottawa, Ontario, 1979), Volume 832 of Lecture Notes in Mathematics, pp. 242–258. Springer, Berlin (1980)

    Chapter  Google Scholar 

  12. 12.

    Ginzburg, V., Dobrovolska, G., Travkin, R.: Moduli spaces, indecomposable objects and potentials over a finite field. Preprint, arXiv:1612.01733v1 (2016)

  13. 13.

    Gabriel, P.: The universal cover of a representation-finite algebra. In: Representations of Algebras (Puebla, 1980), Volume 903 of Notes in Mathematics, pp. 68–105. Springer, Berlin (1981)

    Google Scholar 

  14. 14.

    Johnson, C.P.: Enhanced Nilpotent Representations of a Cyclic Quiver. ProQuest LLC, Ann Arbor (2010). Thesis (Ph.D.)–The University of Utah

  15. 15.

    Kempken, G.: Darstellung, Eine, des Köchers \({\tilde{\text{A}}}_{k}\). Bonner Mathematische Schriften [Bonn Mathematical Publications], 137. Universität Bonn, Mathematisches Institut, Bonn, 1982. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn (1982)

  16. 16.

    Mautner, C.: Affine pavings and the enhanced nilpotent cone. Proc. Am. Math. Soc. 145(4), 1393–1398 (2017)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Nörenberg, R., Skowroński, A.: Tame minimal non-polynomial growth simply connected algebras. Colloquium Math. 73(2), 301–330 (1997)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Serre, J.-P.: Espaces fibrés algébriques (d’après André Weil). In: Séminaire Bourbaki, Vol. 2, pp. Exp. No. 82, 305–311. Société Mathématique de France, Paris (1995)

  19. 19.

    Skowroński, A.: Simply connected algebras and Hochschild cohomologies [ MR1206961 (94e:16016)]. In: Representations of Algebras (Ottawa, ON, 1992), Volume 14 of CMS Conference on Proceedings, pp. 431–447. American Mathematical Society, Providence, RI (1993)

  20. 20.

    Skowroński, A.: Tame algebras with strongly simply connected galois coverings. Colloquium Math. 72(2), 335–351 (1997)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Sun, M.: Point stabilisers for the enhanced and exotic nilpotent cones. J. Group Theory 14(6), 825–839 (2011)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Travkin, R.: Mirabolic Robinson–Schensted–Knuth correspondence. Selecta Math. (N.S.) 14(3–4), 727–758 (2009)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Unger, L.: The concealed algebras of the minimal wild, hereditary algebras. Bayreuth. Math. Schr. 31, 145–154 (1990)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Vinberg, È.B.: The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat. 40(3), 488–526 (1976)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Zwara, G.: Degenerations for modules over representation-finite algebras. Proc. Am. Math. Soc. 127(5), 1313–1322 (1999)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Zwara, G.: Degenerations of finite-dimensional modules are given by extensions. Compos. Math. 121(2), 205–218 (2000)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Johnson for his very precise and valuable ideas regarding the translation between our parametrization and his original parametrization of orbits. We also thank K. Bongartz and M. Reineke for helpful remarks on the subject. The first author was partially supported by EPSRC Grant EP/N005058/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdalena Boos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to a retrospective Open Access order.

Rights and permissions

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellamy, G., Boos, M. The (cyclic) enhanced nilpotent cone via quiver representations. manuscripta math. 161, 333–362 (2020). https://doi.org/10.1007/s00229-018-1098-9

Download citation

Mathematics Subject Classification

  • Primary 16G20
  • Secondary 16G60
  • 17B08