Skip to main content
Log in

The abelian part of a compatible system and \(\ell \)-independence of the Tate conjecture

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let K be a number field and \(\{V_\ell \}_\ell \) a rational strictly compatible system of semisimple Galois representations of K arising from geometry. Let \(\mathbf {G}_\ell \) and \(V_\ell ^{{\text {ab}}}\) be respectively the algebraic monodromy group and the maximal abelian subrepresentation of \(V_\ell \) for all \(\ell \). We prove that the system \(\{V_\ell ^{{\text {ab}}}\}_\ell \) is also a rational strictly compatible system under some group theoretic conditions, e.g., when \(\mathbf {G}_{\ell '}\) is connected and satisfies Hypothesis A for some prime \(\ell '\). As an application, we prove that the Tate conjecture for abelian variety X/K is independent of \(\ell \) if the algebraic monodromy groups of the Galois representations of X satisfy the required conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.F.: Lectures on Exceptional Lie Groups, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)

    Google Scholar 

  2. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. 179(2), 501–609 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bourbaki, N.: Groupes et Algébres de Lie. Masson, Paris (1981)

    MATH  Google Scholar 

  4. Chi, W.-C.: On the \(\ell \)-adic representations attached to simple abelian varieties of type IV. Bull. Aust. Math. Soc. 44, 71–78 (1991)

    Article  MathSciNet  Google Scholar 

  5. Chi, W.-C.: \(\ell \)-adic and \(\lambda \)-adic representations associated to abelian varieties defined over number fields. Am. J. Math. 114, 315–353 (1992)

    Article  MathSciNet  Google Scholar 

  6. Chin, C.W.: Independence of \(\ell \) of monodromy groups. JAMS 17(3), 723–747 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité. In: Automorphic Forms, Shimura Varieties and L-Functions I. Academic Press (1990)

  8. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    Book  Google Scholar 

  9. Deligne, P.: La conjecture de Weil I. Publ. Math. I.H.E.S. 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  10. Deligne, P.: La conjecture de Weil II. Publ. Math. I.H.E.S. 52, 138–252 (1980)

    Article  Google Scholar 

  11. Deligne, P., Milne, J.S., Ogus, A., Shih, K.Y.: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin (1982)

    Book  Google Scholar 

  12. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    Article  MathSciNet  Google Scholar 

  13. Faltings, G.: \(p\)-adic Hodge theory. JAMS 1(1), 255–299 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129, 1st edn. Springer, Berlin (1991)

    Google Scholar 

  15. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III, English transl. in Encycl. Math Sc., p. 41. Springer, Berlin (1994)

  16. Henniart, G.: Représentations \(\ell \)-adiques abéliennes. In: Bertin, M.-J. (ed.) Séminaires de Théorie des Nombres, Paris 1980–81, pp. 107–126. Boston Basel Stuttgart, Birkhäuser (1982)

    Google Scholar 

  17. Hui, C.Y.: Monodromy of Galois representations and equal-rank subalgebra equivalence. Math. Res. Lett. 20(4), 705–728 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hui, C.Y.: \(\ell \)-Independence for compatible systems of (mod \(\ell \)) Galois representations. Compos. Math. 151(7), 1215–1241 (2015)

    Article  MathSciNet  Google Scholar 

  19. Hui, C.Y.: On the rationality of certain type A Galois representations. Trans. Am. Math. Soc. 370(9), 6771–6794 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147(1), 1–241 (2002)

    Article  MathSciNet  Google Scholar 

  21. Langlands, R.P.: Automorphic representations, Shimura varieties and motives. Ein Märchen, automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2. In: Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, pp. 205–246 (1979)

  22. Larsen, M., Pink, R.: Determining representations from invariant dimensions. Invent. Math. 102, 377–398 (1990)

    Article  MathSciNet  Google Scholar 

  23. Larsen, M., Pink, R.: On \(\ell \)-independence of algebraic monodromy groups in compatible systems of representations. Invent. Math. 107, 603–636 (1992)

    Article  MathSciNet  Google Scholar 

  24. Larsen, M., Pink, R.: Abelian varieties, \(l\)-adic representations, and \(l\)-independence. Math. Ann. 302(3), 561–579 (1995)

    Article  MathSciNet  Google Scholar 

  25. Larsen, M., Pink, R.: A connectedness criterion for \(\ell \)-adic Galois representations. Isr. J. Math. 97, 1–10 (1997)

    Article  MathSciNet  Google Scholar 

  26. Pink, R.: \(\ell \)-Adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture. J. Reine Angew. Math. 495, 187–237 (1998)

    Article  MathSciNet  Google Scholar 

  27. Ribet, K.A.: Galois action on division points of Abelian varieties with real multiplications. Am. J. Math. 98(3), 751–804 (1976)

    Article  MathSciNet  Google Scholar 

  28. Serre, J.P.: Sur les groupes de Galois attachés aux groupes p-divisibles. In: Proceed. Conf. on Local Fields. Springer, pp. 113–131 (1967)

  29. Serre, J.-P.: Propriétés galoisiennes des points dórdre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MathSciNet  Google Scholar 

  30. Serre, J.P.: Letter to K. A. Ribet, Jan. 1, reproduced in Coll. Papers, vol. 4, no. 133 (1981)

  31. Serre, J.P.: Letter to J. Tate, Jan. 2 (1985)

  32. Serre, J.P.: Propriétés conjecturales des groupes de Galois motiviques et des représentations \(l\)-adiques, Motives (Seattle, WA, 1991). In: Proc. Sympos. Pure Math., vol. 55, Part 1, Amer. Math. Soc., Providence, RI, pp. 377–400 (1994)

  33. Serre, J.P.: Abelian \(l\)-Adic Representation and Elliptic Curves, Research Notes in Mathematics, vol. 7, 2nd edn. A K Peters, Natik (1998)

    Google Scholar 

  34. Tate, J.: Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry. Harper and Row, New York, pp. 93–110 (1965)

  35. Tate, J.: p-divisible groups. In: Proceed. Conf. on Local Fields. Springer, pp. 158–183 (1967)

  36. Taylor, R.: Galois representations. Ann. Fac. Sci. Toulouse Math. (6) 13(1), 73–119 (2004)

    Article  MathSciNet  Google Scholar 

  37. Waldschmidt, M.: Transcendance et exponentielles en plusieurs variables. Invent. Math. 63, 97–127 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Gabor Wiese for his interests and comments on the paper. I would like to thank the referee for his/her constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yin Hui.

Additional information

The present project was supported partly by the National Research Fund, Luxembourg, cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND) and partly by China’s Thousand Talents Plan: The Recruitment Program for Young Professionals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, C.Y. The abelian part of a compatible system and \(\ell \)-independence of the Tate conjecture. manuscripta math. 161, 223–246 (2020). https://doi.org/10.1007/s00229-018-1068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1068-2

Mathematics Subject Classification

Navigation