Skip to main content

Kurokawa–Mizumoto congruences and degree-8 L-values

Abstract

Let f be a Hecke eigenform of weight k, level 1, genus 1. Let \(E^k_{2,1}(f)\) be its genus-2 Klingen–Eisenstein series. Let F be a genus-2 cusp form whose Hecke eigenvalues are congruent modulo \({\mathfrak {q}}\) to those of \(E^k_{2,1}(f)\), where \({\mathfrak {q}}\) is a “large” prime divisor of the algebraic part of the rightmost critical value of the symmetric square L-function of f. We explain how the Bloch–Kato conjecture leads one to believe that \({\mathfrak {q}}\) should also appear in the denominator of the “algebraic part” of the rightmost critical value of the tensor product L-function \(L(s,f\otimes F)\), i.e. in an algebraic ratio obtained from the quotient of this with another critical value. Using pullback of a genus-5 Siegel–Eisenstein series, we prove this, under weak conditions.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surv. 29, 45–116 (1974), from Uspekhi Mat. Nauk 29, 43–110 (1974)

  2. 2.

    Bergström, J., Dummigan, N.: Eisenstein congruences for split reductive groups. Sel. Math. 22, 1073–1115 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y.I., Ribet, K.A. (eds.) The Grothendieck Festschrift Volume I, Progress in Mathematics, vol. 86, pp. 333–400. Birkhäuser, Boston (1990)

    Google Scholar 

  4. 4.

    Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen. Manuscr. Math. 45, 273–288 (1984)

    Article  MATH  Google Scholar 

  5. 5.

    Böcherer, S., Heim, B.: \(L\)-functions on \(\text{ GSp }_2\times \text{ GL }_2\) of mixed weights. Math. Z. 235, 11–51 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Böcherer, S., Heim, B.: Critical values of \(L\)-functions on \(\text{ GSp }_2\times \text{ GL }_2\). Math. Z. 254, 485–503 (2006)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Böcherer, S., Satoh, T., Yamazaki, T.: On the pullback of a differential operator and its application to vector valued Eisenstein series. Comment. Math. Univ. St. Paul. 41, 1–22 (1992)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Courtieu, M., Panchishkin, A.: Non-archimedean \(L\)-functions and arithmetical Siegel modular forms. In: Lecture Notes in Mathematics, 2nd edn, vol. 1471. Springer (2004)

  10. 10.

    Deligne, P.: Valeurs de Fonctions \(L\) et Périodes d’Intégrales. AMS Proc. Symp. Pure Math. 33(2), 313–346 (1979)

    Article  MATH  Google Scholar 

  11. 11.

    Deligne, P.: Formes modulaires et représentations \(l\)-adiques. Sém. Bourbaki éxp. 355. In: Lecture Notes in Mathematics, vol. 179, pp. 139–172. Springer, Berlin (1969)

  12. 12.

    Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. École Norm. Sup. 37, 663–727 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Dummigan, N.: Symmetric square \(L\)-functions and Shafarevich–Tate groups, II. Int. J. Number Theory 5, 1321–1345 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Dummigan, N.: Eisenstein primes, critical values and global torsion. Pac. J. Math. 233, 291–308 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Dummigan, N., Ibukiyama, T., Katsurada, H.: Some Siegel modular standard \(L\)-values, and Shafarevich–Tate groups. J. Number Theory 131, 1296–1330 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Furusawa, M.: On \(L\)-functions for \(\text{ GSp }(4)\times \text{ GL }(2)\) and their special values. J. F. D. Reine U. Angew. Math. 438, 187–218 (1993)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Satake, I., Morita, Y. (eds.) Automorphic Forms of Several Variables, pp. 114–137. Birkhäuser, Basel (1984)

    Google Scholar 

  18. 18.

    Haruki, A.: Explicit formulae of Siegel Eisenstein series. Manuscr, Math. 92, 107–134 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Heim, B.: Pullbacks of Eisenstein series, Hecke–Jacobi theory and automorphic \(L\)-functions. In: AMS Proceedings of the Symposium Pure Mathematics, vol. 66, pp. 201–238. Part 2, pp. 313–346 (1999)

  20. 20.

    Heim, B.: On the Spezialschar of Maass. Int. J. Math. Math. Sci, Art. ID 726549, 15 pp (2010)

  21. 21.

    Ichino, A.: Pullbacks of Saito–Kurokawa lifts. Invent. math. 162, 551–647 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Katsurada, H.: Exact standard zeta-values of Siegel modular forms. Exp. Math. 19, 65–77 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Klingen, H.: Introductory Lectures on Siegel Modular Forms. Cambridge Studies in Advanced Mathematics, vol. 20. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  24. 24.

    Kohnen, W., Skoruppa, N.-P.: A certain Dirichlet series attached to Siegel modular forms of degree \(2\). Invent. Math. 95, 541–558 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Kohnen, W., Zagier, D.: Values of \(L\)-series of modular forms at the center of the critical strip. Invent. math. 64, 175–198 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Kurokawa, N.: Congruences between Siegel modular forms of degree \(2\). Proc. Jpn. Acad. 55A, 417–422 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. math. 49, 149–165 (1978)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Maass, H.: Siegel’s modular forms and Dirichlet series. In: Lecture Notes in Mathematics, vol. 216. Springer (1971)

  29. 29.

    Mizumoto, S.: Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two. Math. Ann. 275, 149–161 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Mizumoto, S.: Fourier coefficients of generalized Eisenstein series of degree two II. Kodai Math. J. 7, 86–110 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou, no. 19 (1969/70)

  32. 32.

    Shimura, G.: Differential operators, holomorphic projection, and singular forms. Duke Math. J. 76, 141–173 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Soulé, C.: On higher \(p\)-adic regulators, algebraic K-theory, Evanston 1980 (Proceedings of the Conference, Northwestern University, Evanston, Ill., 1980). Lecture Notes in Mathematics, vol. 854, p. 372401. Springer, Berlin (1981)

  34. 34.

    Sturm, J.: The critical values of zeta functions associated to the symplectic group. Duke Math. J. 48, 327–350 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    van der Geer, G.: Siegel modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms, pp. 181–245. Springer, Berlin (2008)

    Chapter  Google Scholar 

  36. 36.

    Weissauer, R.: Four dimensional Galois representations. Astérisque 302, 67–150 (2005)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Yoshida, H.: Motives and Siegel modular forms. Am. J. Math. 123, 1171–1197 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Zagier, D.: Modular forms whose coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable, VI. Lecture Notes in Mathematics, vol. 627, pp. 105–169. Springer (1977)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neil Dummigan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dummigan, N., Heim, B. & Rendina, A. Kurokawa–Mizumoto congruences and degree-8 L-values. manuscripta math. 160, 217–237 (2019). https://doi.org/10.1007/s00229-018-1061-9

Download citation

Mathematics Subject Classification

  • 11F33
  • 11F46
  • 11F67
  • 11F80