Advertisement

Kurokawa–Mizumoto congruences and degree-8 L-values

  • Neil Dummigan
  • Bernhard Heim
  • Angelo Rendina
Article

Abstract

Let f be a Hecke eigenform of weight k, level 1, genus 1. Let \(E^k_{2,1}(f)\) be its genus-2 Klingen–Eisenstein series. Let F be a genus-2 cusp form whose Hecke eigenvalues are congruent modulo \({\mathfrak {q}}\) to those of \(E^k_{2,1}(f)\), where \({\mathfrak {q}}\) is a “large” prime divisor of the algebraic part of the rightmost critical value of the symmetric square L-function of f. We explain how the Bloch–Kato conjecture leads one to believe that \({\mathfrak {q}}\) should also appear in the denominator of the “algebraic part” of the rightmost critical value of the tensor product L-function \(L(s,f\otimes F)\), i.e. in an algebraic ratio obtained from the quotient of this with another critical value. Using pullback of a genus-5 Siegel–Eisenstein series, we prove this, under weak conditions.

Mathematics Subject Classification

11F33 11F46 11F67 11F80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surv. 29, 45–116 (1974), from Uspekhi Mat. Nauk 29, 43–110 (1974)Google Scholar
  2. 2.
    Bergström, J., Dummigan, N.: Eisenstein congruences for split reductive groups. Sel. Math. 22, 1073–1115 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y.I., Ribet, K.A. (eds.) The Grothendieck Festschrift Volume I, Progress in Mathematics, vol. 86, pp. 333–400. Birkhäuser, Boston (1990)Google Scholar
  4. 4.
    Böcherer, S.: Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen. Manuscr. Math. 45, 273–288 (1984)CrossRefzbMATHGoogle Scholar
  5. 5.
    Böcherer, S., Heim, B.: \(L\)-functions on \(\text{ GSp }_2\times \text{ GL }_2\) of mixed weights. Math. Z. 235, 11–51 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Böcherer, S., Heim, B.: Critical values of \(L\)-functions on \(\text{ GSp }_2\times \text{ GL }_2\). Math. Z. 254, 485–503 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Böcherer, S., Satoh, T., Yamazaki, T.: On the pullback of a differential operator and its application to vector valued Eisenstein series. Comment. Math. Univ. St. Paul. 41, 1–22 (1992)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courtieu, M., Panchishkin, A.: Non-archimedean \(L\)-functions and arithmetical Siegel modular forms. In: Lecture Notes in Mathematics, 2nd edn, vol. 1471. Springer (2004)Google Scholar
  10. 10.
    Deligne, P.: Valeurs de Fonctions \(L\) et Périodes d’Intégrales. AMS Proc. Symp. Pure Math. 33(2), 313–346 (1979)CrossRefzbMATHGoogle Scholar
  11. 11.
    Deligne, P.: Formes modulaires et représentations \(l\)-adiques. Sém. Bourbaki éxp. 355. In: Lecture Notes in Mathematics, vol. 179, pp. 139–172. Springer, Berlin (1969)Google Scholar
  12. 12.
    Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sci. École Norm. Sup. 37, 663–727 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dummigan, N.: Symmetric square \(L\)-functions and Shafarevich–Tate groups, II. Int. J. Number Theory 5, 1321–1345 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dummigan, N.: Eisenstein primes, critical values and global torsion. Pac. J. Math. 233, 291–308 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dummigan, N., Ibukiyama, T., Katsurada, H.: Some Siegel modular standard \(L\)-values, and Shafarevich–Tate groups. J. Number Theory 131, 1296–1330 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Furusawa, M.: On \(L\)-functions for \(\text{ GSp }(4)\times \text{ GL }(2)\) and their special values. J. F. D. Reine U. Angew. Math. 438, 187–218 (1993)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Satake, I., Morita, Y. (eds.) Automorphic Forms of Several Variables, pp. 114–137. Birkhäuser, Basel (1984)Google Scholar
  18. 18.
    Haruki, A.: Explicit formulae of Siegel Eisenstein series. Manuscr, Math. 92, 107–134 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heim, B.: Pullbacks of Eisenstein series, Hecke–Jacobi theory and automorphic \(L\)-functions. In: AMS Proceedings of the Symposium Pure Mathematics, vol. 66, pp. 201–238. Part 2, pp. 313–346 (1999)Google Scholar
  20. 20.
    Heim, B.: On the Spezialschar of Maass. Int. J. Math. Math. Sci, Art. ID 726549, 15 pp (2010)Google Scholar
  21. 21.
    Ichino, A.: Pullbacks of Saito–Kurokawa lifts. Invent. math. 162, 551–647 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Katsurada, H.: Exact standard zeta-values of Siegel modular forms. Exp. Math. 19, 65–77 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Klingen, H.: Introductory Lectures on Siegel Modular Forms. Cambridge Studies in Advanced Mathematics, vol. 20. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kohnen, W., Skoruppa, N.-P.: A certain Dirichlet series attached to Siegel modular forms of degree \(2\). Invent. Math. 95, 541–558 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kohnen, W., Zagier, D.: Values of \(L\)-series of modular forms at the center of the critical strip. Invent. math. 64, 175–198 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kurokawa, N.: Congruences between Siegel modular forms of degree \(2\). Proc. Jpn. Acad. 55A, 417–422 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. math. 49, 149–165 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Maass, H.: Siegel’s modular forms and Dirichlet series. In: Lecture Notes in Mathematics, vol. 216. Springer (1971)Google Scholar
  29. 29.
    Mizumoto, S.: Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two. Math. Ann. 275, 149–161 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mizumoto, S.: Fourier coefficients of generalized Eisenstein series of degree two II. Kodai Math. J. 7, 86–110 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou, no. 19 (1969/70)Google Scholar
  32. 32.
    Shimura, G.: Differential operators, holomorphic projection, and singular forms. Duke Math. J. 76, 141–173 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Soulé, C.: On higher \(p\)-adic regulators, algebraic K-theory, Evanston 1980 (Proceedings of the Conference, Northwestern University, Evanston, Ill., 1980). Lecture Notes in Mathematics, vol. 854, p. 372401. Springer, Berlin (1981)Google Scholar
  34. 34.
    Sturm, J.: The critical values of zeta functions associated to the symplectic group. Duke Math. J. 48, 327–350 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    van der Geer, G.: Siegel modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms, pp. 181–245. Springer, Berlin (2008)CrossRefGoogle Scholar
  36. 36.
    Weissauer, R.: Four dimensional Galois representations. Astérisque 302, 67–150 (2005)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yoshida, H.: Motives and Siegel modular forms. Am. J. Math. 123, 1171–1197 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zagier, D.: Modular forms whose coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable, VI. Lecture Notes in Mathematics, vol. 627, pp. 105–169. Springer (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
  2. 2.Department of Applied Information TechnologyGerman University of Technology in Oman (GUtech)AthaibahSultanate of Oman

Personalised recommendations