Advertisement

Analytic properties of multiple Dirichlet series associated to additive and Dirichlet characters

  • Biswajyoti Saha
Article
  • 19 Downloads

Abstract

In this article, we study analytic properties of the multiple Dirichlet series associated to additive and Dirichlet characters. For the multiple Dirichlet series associated to additive characters, the meromorphic continuation is established via obtaining translation formulas satisfied by them. We then determine the exact set of singularities of such multiple Dirichlet series. While it seems difficult to obtain a similar translation formula for the multiple Dirichlet series associated to Dirichlet characters, we establish an intrinsic connection between them and the multiple Dirichlet series associated to additive characters. We rely on this connection to investigate the analytic characteristics of the multiple Dirichlet series associated to Dirichlet characters.

Mathematics Subject Classification

11M32 32Dxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, S., Egami, S., Tanigawa, Y.: Analytic continuation of multiple zeta-functions and their values at non-positive integers. Acta Arith. 98(2), 107–116 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akiyama, S., Ishikawa, H.: On Analytic Continuation of Multiple \(L\)-Functions and Related Zeta-Functions, Analytic Number Theory (Beijing/Kyoto, 1999) 1–16, Dev. Math. 6, Kluwer Acad. Publ., Dordrecht (2002)Google Scholar
  3. 3.
    Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisoněk, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bowman, D., Bradley, D. M.: Multiple Polylogarithms: A Brief Survey, q-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), 71–92, Contemp. Math. 291, Am. Math. Soc., Providence, RI (2001)Google Scholar
  5. 5.
    Frobenius, G.: Über die Bernoullischen Zahlen und die Eulerschen Polynome, pp. 809–847. Sitzungsberichte der Preussischen Akad. der Wiss. (1910)Google Scholar
  6. 6.
    Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5(4), 497–516 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Goncharov, A. B.: Multiple polylogarithms and mixed Tate motives. arXiv:math/0103059
  8. 8.
    Matsumoto, K., Tanigawa, Y.: The analytic continuation and the order estimate of multiple Dirichlet series. J. Théor. Nombres Bordeaux 15(1), 267–274 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mehta, J., Saha, B., Viswanadham, G.K.: Analytic properties of multiple zeta functions and certain weighted variants, an elementary approach. J. Number Theory 168, 487–508 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Saha, B.: On the analytic continuation of multiple Dirichlet series and their singularities. Ph.D. thesis, HBNI (2016)Google Scholar
  11. 11.
    Saha, B.: An elementary approach to the meromorphic continuation of some classical Dirichlet series. Proc. Indian Acad. Sci. Math. Sci. 127(2), 225–233 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Waldschmidt, M.: Multiple Polylogarithms: An Introduction, Number Theory and Discrete Mathematics (Chandigarh, 2000), 112, Trends Math. Birkhäuser, Basel (2002)Google Scholar
  13. 13.
    Zhao, J.: Analytic continuation of multiple zeta functions. Proc. Am. Math. Soc. 128(5), 1275–1283 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhao, J.: Analytic continuation of multiple polylogarithms. Anal. Math. 33(4), 301–323 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhao, J.: Multiple polylogarithm values at roots of unity. C. R. Math. Acad. Sci. Paris 346(19–20), 1029–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhao, J.: Standard relations of multiple polylogarithm values at roots of unity. Doc. Math. 15, 1–34 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations