Static perfect fluid spacetime with half conformally flat spatial factor

  • Benedito Leandro
  • Newton Solórzano


The aim of this paper is to investigate the static perfect fluid spacetime \(M^{4}\times _{f}\mathbb {R}\) such that \((M^4, g)\) is a half conformally flat Riemannian manifold. We prove that \((M^4, g)\) is, in fact, locally isometric to a warped product manifold \(I\times _{\phi }N^{3}\) where \(I\subset \mathbb {R}\) and \(N^{3}\) is a space form. Consequently, we make an analysis of the Fischer-Marsden conjecture for a 4-dimensional Riemannian manifold.

Mathematics Subject Classification

53C21 83C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barros, A., Digenes, R., Ribeiro, E.: Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary. J. Geom. Anal. 25(4), 2698–2715 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barros, A., Ribeiro Jr., E.: Critical point equation on four-dimensional compact manifolds. Math. Nachr. 287, 1618–1623 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besse, A.L.: Einstein Manifolds. Spring, Berlin (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, H.-D., Xiaofeng, S., Yingying, Z.: On the structure of gradient Yamabe solitons. Math. Res. Lett. 19, 767–774 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, X., Yuanqi, W.: On four-dimensional anti-self-dual gradient Ricci solitons. J. Geom. Anal. 25(2), 1335–1343 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dillen, F., Verstralen, L.: Handbook of Differential Geometry, vol. 1. Elsevier, New York City (2000)Google Scholar
  7. 7.
    Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of 2nd Order, 2nd edn. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kobayashi, O.: A diferential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34(4), 665–675 (1982)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kobayashi, O., Obata, M.: Conformally-Flatness and Static Spacetime. Manifolds and Lie Groups. Progress in Mathematics, vol. 14, pp. 197–206. Birkhuser, Boston (1981)Google Scholar
  12. 12.
    Wolfgang, K.: Differential Geometry: Curves-Surface-Manifolds. American Mathematical Society, Providence (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidade de Federal de JataíJataíBrazil
  2. 2.Universidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil

Personalised recommendations