Advertisement

Static perfect fluid spacetime with half conformally flat spatial factor

  • Benedito Leandro
  • Newton Solórzano
Article

Abstract

The aim of this paper is to investigate the static perfect fluid spacetime \(M^{4}\times _{f}\mathbb {R}\) such that \((M^4, g)\) is a half conformally flat Riemannian manifold. We prove that \((M^4, g)\) is, in fact, locally isometric to a warped product manifold \(I\times _{\phi }N^{3}\) where \(I\subset \mathbb {R}\) and \(N^{3}\) is a space form. Consequently, we make an analysis of the Fischer-Marsden conjecture for a 4-dimensional Riemannian manifold.

Mathematics Subject Classification

53C21 83C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barros, A., Digenes, R., Ribeiro, E.: Bach-flat critical metrics of the volume functional on 4-dimensional manifolds with boundary. J. Geom. Anal. 25(4), 2698–2715 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barros, A., Ribeiro Jr., E.: Critical point equation on four-dimensional compact manifolds. Math. Nachr. 287, 1618–1623 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besse, A.L.: Einstein Manifolds. Spring, Berlin (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, H.-D., Xiaofeng, S., Yingying, Z.: On the structure of gradient Yamabe solitons. Math. Res. Lett. 19, 767–774 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, X., Yuanqi, W.: On four-dimensional anti-self-dual gradient Ricci solitons. J. Geom. Anal. 25(2), 1335–1343 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dillen, F., Verstralen, L.: Handbook of Differential Geometry, vol. 1. Elsevier, New York City (2000)Google Scholar
  7. 7.
    Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of 2nd Order, 2nd edn. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kobayashi, O.: A diferential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34(4), 665–675 (1982)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kobayashi, O., Obata, M.: Conformally-Flatness and Static Spacetime. Manifolds and Lie Groups. Progress in Mathematics, vol. 14, pp. 197–206. Birkhuser, Boston (1981)Google Scholar
  12. 12.
    Wolfgang, K.: Differential Geometry: Curves-Surface-Manifolds. American Mathematical Society, Providence (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidade de Federal de JataíJataíBrazil
  2. 2.Universidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil

Personalised recommendations