Skip to main content
Log in

Group actions on 2-categories

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study actions of discrete groups on 2-categories. The motivating examples are actions on the 2-category of representations of finite tensor categories and their relation with the extension theory of tensor categories by groups. Associated to a group action on a 2-category, we construct the 2-category of equivariant objects. We also introduce the G-equivariant notions of pseudofunctor, pseudonatural transformation and modification. Our first main result is a coherence theorem for 2-categories with an action of a group. For a 2-category \({\mathcal B}\) with an action of a group G, we construct a braided G-crossed monoidal category \(\mathcal {Z}_G({\mathcal B})\) with trivial component the Drinfeld center of \({\mathcal B}\). We prove that, in the case of a G-action on the 2-category of representation of a tensor category \({\mathcal C}\), the 2-category of equivariant objects is biequivalent to the module categories over an associated G-extension of \({\mathcal C}\). Finally, we prove that the center of the equivariant 2-category is monoidally equivalent to the equivariantization of a relative center, generalizing results obtained in Gelaki et al. (Algebra Number Theory 3(8):959–990, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. 2011(24), 5644–5705 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Burciu, S., Natale, S.: Fusion rules of equivariantizations of fusion categories. J. Math. Phys. 54, 013511 (2013). https://doi.org/10.1063/1.4774293

    Article  MathSciNet  MATH  Google Scholar 

  3. Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math 226(15), 176–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuchs, J., Schweigert, C., Valentino, A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321(2), 543–575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galindo, C.: Coherence for monoidal \(G\)-categories and braided \(G\)-crossed categories, Preprint arxiv:1604.01679

  8. Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, R., Power, A., Street, R.: Coherence for tricategories, Mem. Am. Math. Soc. 117 (1995)

  10. Greenough, J.: Monoidal 2-structure of Bimodule Categories. J. Algebra 324, 1818–1859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurski, N.: Coherence in three-dimensional category theory, volume 201 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  12. Hesse, J.: An equivalence between Frobenius algebras and Calabi-Yau categories, preprint arXiv:1609.06475

  13. Hesse, J., Schweigert, C., Valentino, A.: Frobenius algebras and homotopy fixed points of group actions on bicategories, preprint arXiv:1607.05148

  14. Kelly, G., Street, R.: Review of the elements of 2-categories, in: Category Seminar (Proc. Sem.), Sydney, 1972/1973, in: Lecture Notes in Math., vol. 420, Springer 75–103 (1974)

  15. Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos. Math. 147(5), 1519–1545 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazorchuk, V., Miemietz, V.: Transitive 2-representations of finitary 2-categories. Trans. Am. Math. Soc. 368(11), 7623–7644 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazorchuk, V., Miemietz, V.: Isotypic faithful 2-representations of J-simple fiat 2-categories. Math. Z. 282(1-2), 411–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mombelli, M., Natale, S.: Module categories over equivariantized tensor categories, accepted in Moscow Math. J., preprint arxiv:1405.7896

  19. Meir, E., Szymik, M.: Drinfeld centers for bicategories. Doc. Math. J. DMV 20, 707–735 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Nikolaus, T., Schweigert, C.: Bicategories in field theories—an invitation preprint Hamburger Beiträge zur Mathematik Nr. 425, (2001)

  21. Street, R.: Fibrations and Yoneda’s Lemma in a 2-category, in: Category Seminar (Proc. Sem.), Sydney, 1972/1973, in: Lecture Notes in Math., vol. 420, Springer, pp. 104–133. (1974)

  22. Street, R.: Fibrations in bicategories. Cahiers Topologie Geom. Differentielle 21(2), 111–160 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Rouquier, R.: 2-Kac-Moody algebras, Preprint arXiv:0812.5023

  24. Tambara, D.: Invariants and semi-direct products for finite group actions on tensor categories. J. Math. Soc. Jpn. 53, 429–456 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turaev, V.: Homotopy quantum field theory, volume 10 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, Appendix 5 by Michael Müger and Appendices 6 and 7 by Alexis Virelizier (2010)

  26. Turaev, V., Virelizier, A.: On 3-dimensional homotopy quantum field theory, I. Internat. J. Math. 23(9):1250094, 28, (2012)

  27. Turaev, V., Virelizier, A.: On 3-dimensional homotopy quantum field theory II: The surgery approach. Internat. J. Math., 25(4):1450027, 66, (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Mombelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernaschini, E., Galindo, C. & Mombelli, M. Group actions on 2-categories. manuscripta math. 159, 81–115 (2019). https://doi.org/10.1007/s00229-018-1031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1031-2

Mathematics Subject Classification

Navigation