Algebraic surfaces with \(p_g\) = q = 1, \(K^2\) = 4 and genus 3 Albanese fibration

  • Songbo Ling


In this paper, we study the Gieseker moduli space \(\mathcal {M}_{1,1}^{4,3}\) of minimal surfaces with \(p_g=q=1, K^2=4\) and genus 3 Albanese fibration. Under the assumption that direct image of the canonical sheaf under the Albanese map is decomposable, we find two irreducible components of \(\mathcal {M}_{1,1}^{4,3}\), one of dimension 5 and the other of dimension 4.

Mathematics Subject Classification

14J29 14J10 14J15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barja, M.A., Zucconi, F.: A note on a conjecture of Xiao. J. Math. Soc. Jpn. 52(3), 633–635 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 4, 2nd edn. Springer, Berlin (2004)Google Scholar
  4. 4.
    Bombieri, E.: Canonical models of surfaces of general type. Inst. Hautes Études Sci. Publ. Math. 42, 171–219 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Catanese, F.: On a class of surfaces of general type. In: Tomassini, G. (ed.) Algebraic Surfaces. CIME, Liguori, pp. 269–284. Springer, Berlin (1981)Google Scholar
  6. 6.
    Catanese, F.: On the moduli space of surfaces of general type. J. Differ. Geom. 19, 483–515 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Catanese, F.: Moduli of Algebraic Surfaces Theory of Moduli (Montecatini Terme, 1985), Lecture Notes in Mathematics, vol. 1337, pp. 1–83. Springer, Berlin (1988)Google Scholar
  8. 8.
    Catanese, F., Ciliberto, C.: Surfaces with \(p_g = q = 1\). In: Symposium of Mathematics, XXXII. Problems in the Theory of Surfaces and their Classification (Cortona, 1988), pp. 49–79, Academic Press, London (1991)Google Scholar
  9. 9.
    Catanese, F., Ciliberto, C.: Symmetric products of elliptic curves and surfaces of general type with \(p_g = q = 1\). J. Algebr. Geom. 2(3), 389–411 (1993)zbMATHGoogle Scholar
  10. 10.
    Catanese, F., Franciosi, M.: Divisors of small genus on algebraic surfaces and projective embeddings. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Ramat Gan, 1993, Israel Mathematical Conference Proceedings, vol. 9, Bar-Ilan University, Ramat Gan, pp. 109–140 (1996)Google Scholar
  11. 11.
    Catanese, F.: A superficial working guide to deformations and moduli. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, vol. I, pp. 161–215, Advanced Lectures in Mathematics (ALM), 24, International Press, Somerville, MA (2013)Google Scholar
  12. 12.
    Catanese, F., Pignatelli, R.: Low genus fibrations. I. Ann. Sci. Ecole Norm. Sup. (4) 39(6), 1011–1049 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles. Universitext, p. x+328. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52, p. xvi+496. Springer, New York (1977)Google Scholar
  15. 15.
    Horikawa, E.: On algebraic surfaces with pencils of curves of genus 2. In: Baily, W.L. Jr., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, pp. 79–90 (1977)Google Scholar
  16. 16.
    Horikawa, E.: Algebraic surfaces of general type with small \(c^2\). V. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 745–755 (1981)zbMATHGoogle Scholar
  17. 17.
    Ishida, H.: Bounds for the relative Euler–Poincar\(\acute{e}\) characteristic of certain hyperelliptic fibrations. Manuscr. Math. 118, 467–483 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kodaira, K.: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Jpn. 20, 170–192 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Manetti, M.: On some components of moduli space of surfaces of general type. Comput. Math. 92, 285–297 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mendes Lopes, M.: The relative canonical algebra for genus three fibrations. Ph.D. thesis, University of Warwick (1989)Google Scholar
  22. 22.
    Murakami, M.: Notes on hyperelliptic fibrations of genus 3, I. Preprint, arXiv:1209.6278
  23. 23.
    Pignatelli, R.: Some (big) irreducible components of the moduli space of minimal surfaces of general type with \(p_g = q = 1\) and \(K^2=4\). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl 20(3), 207–226 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Polizzi, F.: Standard isotrivial fibrations with \(p_g = q = 1\). J. Algebra 321, 1600–1631 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rito, C.: Involutions on surfaces with \(p_g = q = 1\). Collect. Math. 61(1), 81–106 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rito, C.: On equations of double planes with \(p_g = q = 1\). Math. Comput. 79(270), 1091–1108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Šafarevič, I.R., Averbuh, B.G., Vaǐnberg, JuR, Žižčenko, A.B., Manin, JuI, Moǐšezon, B.G., Tjurina, G.N., Tjurin, A.N.: Algebraic surfaces. Trudy Mat. Inst. Steklov. 75, 1–215 (1965). (Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  2. 2.Lehrstuhl Mathematik VIIIUniversität BayreuthBayreuthGermany

Personalised recommendations