Advertisement

Algebraic surfaces with \(p_g\) = q = 1, \(K^2\) = 4 and genus 3 Albanese fibration

  • Songbo Ling
Article

Abstract

In this paper, we study the Gieseker moduli space \(\mathcal {M}_{1,1}^{4,3}\) of minimal surfaces with \(p_g=q=1, K^2=4\) and genus 3 Albanese fibration. Under the assumption that direct image of the canonical sheaf under the Albanese map is decomposable, we find two irreducible components of \(\mathcal {M}_{1,1}^{4,3}\), one of dimension 5 and the other of dimension 4.

Mathematics Subject Classification

14J29 14J10 14J15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barja, M.A., Zucconi, F.: A note on a conjecture of Xiao. J. Math. Soc. Jpn. 52(3), 633–635 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barth, W., Hulek, K., Peters, C., van de Ven, A.: Compact Complex Surfaces. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), vol. 4, 2nd edn. Springer, Berlin (2004)Google Scholar
  4. 4.
    Bombieri, E.: Canonical models of surfaces of general type. Inst. Hautes Études Sci. Publ. Math. 42, 171–219 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Catanese, F.: On a class of surfaces of general type. In: Tomassini, G. (ed.) Algebraic Surfaces. CIME, Liguori, pp. 269–284. Springer, Berlin (1981)Google Scholar
  6. 6.
    Catanese, F.: On the moduli space of surfaces of general type. J. Differ. Geom. 19, 483–515 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Catanese, F.: Moduli of Algebraic Surfaces Theory of Moduli (Montecatini Terme, 1985), Lecture Notes in Mathematics, vol. 1337, pp. 1–83. Springer, Berlin (1988)Google Scholar
  8. 8.
    Catanese, F., Ciliberto, C.: Surfaces with \(p_g = q = 1\). In: Symposium of Mathematics, XXXII. Problems in the Theory of Surfaces and their Classification (Cortona, 1988), pp. 49–79, Academic Press, London (1991)Google Scholar
  9. 9.
    Catanese, F., Ciliberto, C.: Symmetric products of elliptic curves and surfaces of general type with \(p_g = q = 1\). J. Algebr. Geom. 2(3), 389–411 (1993)zbMATHGoogle Scholar
  10. 10.
    Catanese, F., Franciosi, M.: Divisors of small genus on algebraic surfaces and projective embeddings. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, Ramat Gan, 1993, Israel Mathematical Conference Proceedings, vol. 9, Bar-Ilan University, Ramat Gan, pp. 109–140 (1996)Google Scholar
  11. 11.
    Catanese, F.: A superficial working guide to deformations and moduli. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, vol. I, pp. 161–215, Advanced Lectures in Mathematics (ALM), 24, International Press, Somerville, MA (2013)Google Scholar
  12. 12.
    Catanese, F., Pignatelli, R.: Low genus fibrations. I. Ann. Sci. Ecole Norm. Sup. (4) 39(6), 1011–1049 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles. Universitext, p. x+328. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52, p. xvi+496. Springer, New York (1977)Google Scholar
  15. 15.
    Horikawa, E.: On algebraic surfaces with pencils of curves of genus 2. In: Baily, W.L. Jr., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, pp. 79–90 (1977)Google Scholar
  16. 16.
    Horikawa, E.: Algebraic surfaces of general type with small \(c^2\). V. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 745–755 (1981)zbMATHGoogle Scholar
  17. 17.
    Ishida, H.: Bounds for the relative Euler–Poincar\(\acute{e}\) characteristic of certain hyperelliptic fibrations. Manuscr. Math. 118, 467–483 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kodaira, K.: Pluricanonical systems on algebraic surfaces of general type. J. Math. Soc. Jpn. 20, 170–192 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Manetti, M.: On some components of moduli space of surfaces of general type. Comput. Math. 92, 285–297 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mendes Lopes, M.: The relative canonical algebra for genus three fibrations. Ph.D. thesis, University of Warwick (1989)Google Scholar
  22. 22.
    Murakami, M.: Notes on hyperelliptic fibrations of genus 3, I. Preprint, arXiv:1209.6278
  23. 23.
    Pignatelli, R.: Some (big) irreducible components of the moduli space of minimal surfaces of general type with \(p_g = q = 1\) and \(K^2=4\). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl 20(3), 207–226 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Polizzi, F.: Standard isotrivial fibrations with \(p_g = q = 1\). J. Algebra 321, 1600–1631 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rito, C.: Involutions on surfaces with \(p_g = q = 1\). Collect. Math. 61(1), 81–106 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rito, C.: On equations of double planes with \(p_g = q = 1\). Math. Comput. 79(270), 1091–1108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Šafarevič, I.R., Averbuh, B.G., Vaǐnberg, JuR, Žižčenko, A.B., Manin, JuI, Moǐšezon, B.G., Tjurina, G.N., Tjurin, A.N.: Algebraic surfaces. Trudy Mat. Inst. Steklov. 75, 1–215 (1965). (Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  2. 2.Lehrstuhl Mathematik VIIIUniversität BayreuthBayreuthGermany

Personalised recommendations