Gamma factors and quadratic extension over finite fields
Article
First Online:
Received:
Accepted:
Abstract
This paper characterizes \({\mathrm {GL}}_n({\mathbb {F}}_q )\)-distinguished cuspidal representations of \({\mathrm {GL}}_n({\mathbb {F}}_{q^2})\) in terms of the special values of their twisted gamma factors.
Mathematics Subject Classification
Primary 20C33 Secondary 11L05Preview
Unable to display preview. Download preview PDF.
References
- 1.Bump, D.: Notes on representations of \(\text{GL}(r)\) over a finite field. https://pdfs.semanticscholar.org/bca8/4c212fd6cf5feec34b8b0f3ebd224bff71c1.pdf
- 2.Chai, J.: Bessel functions and local converse conjecture of Jacquet. To appear in. J. Eur. Math. Soc. (2016)Google Scholar
- 3.Gelfand, S.I.: Representation of the general linear group over a finite field. In: Proceedings of Summer School of the Bolya-Janos Math. Soc., Budapest (1971) Halsted New York (1975)Google Scholar
- 4.Gelfand, S.I.: Representation of the full linear group over a finite field. Math. USSR Sb. 12(1), 13–39 (1970)CrossRefGoogle Scholar
- 5.Gelfand, I.M., Graev, M.I.: Construction of irreducible representations of simple algebraic groups over a finite field. Dokl. Akad. Nauk SSSR 147, 529–532 (1962). (Russian)MathSciNetGoogle Scholar
- 6.Gow, R.: Two multiplicity-free permutation representations of the general linear group \(\text{ GL }(n, q^2)\). Math. Z. 188(1), 45–54 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 7.Green, J.A.: The characters of the finite general linear groups. Trans. Am. Math. Soc. 80, 402–447 (1955)MathSciNetCrossRefMATHGoogle Scholar
- 8.Hakim, J., Hakim, J.: Distinguished \(p\)-adic representations. Duke Math. J. 62(1), 1–22 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 9.Hakim, J., Offen, O.: Distinguished representations of \(\text{ GL }(n)\) and local converse theorems. Manus. Math. 148(1–2), 1–27 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 10.Jacquet, H., Liu, Baiying: On the local converse theorem for p-adic \(\text{ GL }_n\). To appear in Amer. J. Math. (2016)Google Scholar
- 11.Jeffrey, A: Character tables for \(\text{ GL }(2), \text{ SL }(2), \text{ PGL }(2)\) and \(\text{ PSL }(2)\) over a finite field. http://www.math.umd.edu/~jda/characters/characters.pdf
- 12.Li, H-C.: A Note on Complex Representations of \(\text{ GL }(2, {\mathbb{F}}_q)\). http://math.ntnu.edu.tw/~li/note/REPGL2K.pdf
- 13.Nien, C.: A proof of finite field analogue of Jacquet’s conjecture. Amer J. Math. 136(3), 653–674 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 14.Nien, C.: \(n\times 1\) local gamma factors and Gauss sums. Finite Fields Appl. 46, 255–270 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 15.Offen, O.: On local root numbers and distinction. J. Reine Angew. Math. 652, 165–205 (2011)MathSciNetMATHGoogle Scholar
- 16.Ok, Y.: Distinction and gamma Factors at 1/2: Supercuspidal Case. Ph.D. thesis, Columbia University. ProQuest LLC, Ann Arbor, MI (1997)Google Scholar
- 17.Piatetski-Shapiro, I.: Complex representations of \(\text{ GL }(2,K)\) for finite fields \(K\). Contemporary Mathematics, 16. American Mathematical Society, Providence, R.I. (1983)Google Scholar
- 18.Roditty, E-A.: On gamma factors and Bessel functions for representations of general linear groups over finite field. M.Sc. thesis, Tel-Aviv University (2010)Google Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2018