Skip to main content
Log in

Maximal function estimates and self-improvement results for Poincaré inequalities

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, Volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  2. Eriksson-Bique, S.: Alternative proof of Keith–Zhong self-improvement (2016). arXiv:1610.02129

  3. García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, Volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1985)

    MATH  Google Scholar 

  4. Gogatishvili, A., Koskela, P., Zhou, Y.: Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces. Forum Math. 25(4), 787–819 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Gol’dshtein, V., Troyanov, M.: Axiomatic theory of Sobolev spaces. Expos. Math. 19(4), 289–336 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Volume 338 of Contemporary Mathematics, pp. 173–218. American Mathematical Society, Providence (2003)

  7. Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14(3), 601–622 (1998)

    Article  MATH  Google Scholar 

  8. Hajłasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320(10), 1211–1215 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  10. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, Volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  11. Jiang, R., Shanmugalingam, N., Yang, D., Yuan, W.: Hajłasz gradients are upper gradients. J. Math. Anal. Appl. 422(1), 397–407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167(2), 575–599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1989)

    MATH  Google Scholar 

  14. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shanmugalingam, N.: A universality property of Sobolev spaces in metric measure spaces. In: Sobolev Spaces in Mathematics I, volume 8 of The International Mathematical Series, pp. 345–359. Springer, New York (2009)

  16. Shanmugalingam, N., Yang, D., Yuan, W.: Newton–Besov spaces and Newton–Triebel–Lizorkin spaces on metric measure spaces. Positivity 19(2), 177–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti V. Vähäkangas.

Additional information

The research is supported by the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinnunen, J., Lehrbäck, J., Vähäkangas, A.V. et al. Maximal function estimates and self-improvement results for Poincaré inequalities. manuscripta math. 158, 119–147 (2019). https://doi.org/10.1007/s00229-018-1016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1016-1

Mathematics Subject Classification

Navigation