Abstract
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces.
Similar content being viewed by others
References
Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, Volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2011)
Eriksson-Bique, S.: Alternative proof of Keith–Zhong self-improvement (2016). arXiv:1610.02129
García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics, Volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1985)
Gogatishvili, A., Koskela, P., Zhou, Y.: Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces. Forum Math. 25(4), 787–819 (2013)
Gol’dshtein, V., Troyanov, M.: Axiomatic theory of Sobolev spaces. Expos. Math. 19(4), 289–336 (2001)
Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Volume 338 of Contemporary Mathematics, pp. 173–218. American Mathematical Society, Providence (2003)
Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14(3), 601–622 (1998)
Hajłasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320(10), 1211–1215 (1995)
Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)
Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, Volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge (2015)
Jiang, R., Shanmugalingam, N., Yang, D., Yuan, W.: Hajłasz gradients are upper gradients. J. Math. Anal. Appl. 422(1), 397–407 (2015)
Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167(2), 575–599 (2008)
Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1989)
Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)
Shanmugalingam, N.: A universality property of Sobolev spaces in metric measure spaces. In: Sobolev Spaces in Mathematics I, volume 8 of The International Mathematical Series, pp. 345–359. Springer, New York (2009)
Shanmugalingam, N., Yang, D., Yuan, W.: Newton–Besov spaces and Newton–Triebel–Lizorkin spaces on metric measure spaces. Positivity 19(2), 177–220 (2015)
Acknowledgements
Funding was provided by Academy of Finland.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research is supported by the Academy of Finland.
Rights and permissions
About this article
Cite this article
Kinnunen, J., Lehrbäck, J., Vähäkangas, A.V. et al. Maximal function estimates and self-improvement results for Poincaré inequalities. manuscripta math. 158, 119–147 (2019). https://doi.org/10.1007/s00229-018-1016-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-018-1016-1