manuscripta mathematica

, Volume 157, Issue 3–4, pp 529–550 | Cite as

Obstructions to the Hasse principle in families

  • Martin Bright
Open Access


For a family of varieties over a number field, we give conditions under which 100% of members have no Brauer–Manin obstruction to the Hasse principle.

Mathematics Subject Classification

11G35 14G25 14F22 


  1. 1.
    Bhargava, M.: A positive proportion of plane cubics fail the Hasse principle. arXiv:1402.1131
  2. 2.
    Bright, M.J.: Bad reduction of the Brauer–Manin obstruction. J. Lond. Math. Soc. (2) 91(3), 643–666 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bright, M.J., Browning, T.D., Loughran, D.: Failure of weak approximation in families. Compos. Math. 152(07), 1435–1475 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Browning, T., Loughran, D.: Sieving Points on Varieties. arXiv:1705.01999
  5. 5.
    Colliot-Thélène, J.-L.: L’arithmétique des variétés rationnelles. Ann. Fac. Sci. Toulouse Math. (6) 1(3), 295–336 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Colliot-Thélène, J.-L., Kanevsky, D., Sansuc, J.-J.: Arithmétique des surfaces cubiques diagonales. In: Diophantine Approximation and Transcendence Theory (Bonn, 1985), volume 1290 of Lecture Notes in Mathematics, pp. 1–108. Springer, Berlin (1987)Google Scholar
  7. 7.
    Grothendieck, A.: Séminaire de Géometrie Algébrique du Bois-Marie SGA 1: Revêtements Étales et Groupe Fondamental. Number 224 in Lecture Notes in Mathematics. Springer (1971)Google Scholar
  8. 8.
    Harari, D.: Méthode des fibrations et obstruction de Manin. Duke Math. J. 75(1), 221–260 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Heath-Brown, D.R.: The density of rational points on cubic surfaces. Acta Arith. 79(1), 17–30 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jahnel, J., Schindler, D.: Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme. Ann. Inst. Fourier (Grenoble) 67(4), 1783–1807 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Manin, Yu.I: Le groupe de Brauer-Grothendieck en géométrie diophantienne. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, pp. 401–411 (1971)Google Scholar
  12. 12.
    Milne, J.S.: Etale Cohomology. Number 33 in Princeton Mathematical Series. Princeton University Press, Princeton (1980)Google Scholar
  13. 13.
    Serre, J.-P.: Lectures on the Mordell-Weil Theorem. Aspects of Mathematics. In: Vieweg, F., Braunschweig, S. (eds.) third edn (1997). Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and SerreGoogle Scholar
  14. 14.
    Skorobogatov, A.: Torsors and Rational Points, Volume 144 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  15. 15.
    Skorobogatov, A.N.: Beyond the Manin obstruction. Invent. Math. 135(2), 399–424 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Uematsu, T.: On the Brauer group of diagonal cubic surfaces. Q. J. Math. 65(2), 677–701 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Mathematisch InstituutLeidenNetherlands

Personalised recommendations