Ammann, B.: The Dirac operator on collapsing \(S^1\)-bundles, Séminaire de Théorie Spectrale et Géométrie, vol. 16, Année 1997–1998, Sémin. Théor. Spectr. Géom., vol. 16, Univ. Grenoble I, Saint-Martin-d’Hères, pp. 33–42 (1998)
Ammann, B.: Spin-Strukturen und das Spektrum des Dirac-Operators, Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (1998)
Besse, A.L.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1987 edition
Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581–599 (1992)
Article
Google Scholar
Boyer, C.P., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)
MATH
Google Scholar
Cheeger, J., Fukaya, K., Gromov, M.: Nilpotent structures and invariant metrics on collapsed manifolds. J. Am. Math. Soc. 5(2), 327–372 (1992)
MathSciNet
Article
Google Scholar
Dong, C., Liu, K., Ma, X.: On orbifold elliptic genus. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., vol. 310, Am. Math. Soc. Providence, RI, pp. 87–105 (2002)
Fukaya, K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87(3), 517–547 (1987)
MathSciNet
Article
Google Scholar
Fukaya, K.: Collapsing Riemannian manifolds to ones of lower dimensions. J. Differ. Geom. 25(1), 139–156 (1987)
MathSciNet
Article
Google Scholar
Fukaya, K.: A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters. J. Differ. Geom. 28(1), 1–21 (1988)
MathSciNet
Article
Google Scholar
Fukaya, K.: Hausdorff convergence of Riemannian manifolds and its applications. In: Recent Topics in Differential and Analytic Geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, pp. 143–238 (1990)
Gilkey, P.B.: The Geometry of Spherical Space Form Groups, Series in Pure Mathematics. In: Bahri, A., Bendersky, M. (eds), vol. 7, World Scientific Publishing Co., Inc, Teaneck, NJ, With an appendix (1989)
Herzlich, M., Moroianu, A.: Generalized Killing spinors and conformal eigenvalue estimates for \({\rm Spin}^c\) manifolds. Ann. Glob. Anal. Geom. 17(4), 341–370 (1999)
Article
Google Scholar
Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976). Grundlehren der Mathematischen Wissenschaften, Band 132
MATH
Google Scholar
Kirby, R.C., Taylor, L.R.: \({\rm Pin}\) structures on low-dimensional manifolds. In: Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, pp. 177–242 (1990)
Lott, J.: Collapsing and Dirac-type operators. In: Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), vol. , pp. 175–196 (2002)
Lott, J.: Collapsing and the differential form Laplacian: the case of a singular limit space (2002). https://math.berkeley.edu/~lott/sing.pdf. Accessed 21 Feb 2002
Lott, J.: Collapsing and the differential form Laplacian: the case of a smooth limit space. Duke Math. J. 114(2), 267–306 (2002)
MathSciNet
Article
Google Scholar
Moroianu, A.: Opérateur de dirac et submersions riemanniennes, Ph.D. thesis, École-Polytechnique (1996)
Nowaczyk, N.: Continuity of Dirac spectra. Ann. Global Anal. Geom. 44(4), 541–563 (2013)
MathSciNet
Article
Google Scholar
Naber, A., Tian, G.: Geometric structures of collapsing Riemannian manifolds I, Surveys in geometric analysis and relativity. Adv. Lect. Math. (ALM), vol. 20, Int. Press, Somerville, MA, pp. 439–466 (2011)
Rong, X.: Collapsed manifolds with bounded sectional curvature and applications. In: Surveys in Differential Geometry. vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, pp. 1–23 (2007)
Roos, S.: A characterization of codimension 1 collapse under bounded curvature and diameter (2017). ArXiv e-prints https://arxiv.org/abs/1701.06515
Thurston, W.: Geometry and topology of three-manifolds (1980). http://library.msri.org/books/gt3m/. Accessed Mar 2002