Skip to main content
Log in

Generalizations of the Springer correspondence and cuspidal Langlands parameters

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \({\mathcal H}\) be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for \({\mathcal H}\), which conjecturally puts supercuspidal \({\mathcal H}\)-representations in bijection with such L-parameters. We also define a cuspidal support map and Bernstein components for enhanced L-parameters, in analogy with Bernstein’s theory of representations of p-adic groups. We check that for several well-known reductive groups these analogies are actually precise. Furthermore we reveal a new structure in the space of enhanced L-parameters for \({\mathcal H}\), that of a disjoint union of twisted extended quotients. This is an analogue of the ABPS conjecture (about irreducible \({\mathcal H}\)-representations) on the Galois side of the local Langlands correspondence. Only, on the Galois side it is no longer conjectural. These results will be useful to reduce the problem of finding a local Langlands correspondence for \({\mathcal H}\)-representations to the corresponding problem for supercuspidal representations of Levi subgroups of \({\mathcal H}\). The main machinery behind this comes from perverse sheaves on algebraic groups. We extend Lusztig’s generalized Springer correspondence to disconnected complex reductive groups G. It provides a bijection between, on the one hand, pairs consisting of a unipotent element u in G and an irreducible representation of the component group of the centralizer of u in G, and, on the other hand, irreducible representations of a set of twisted group algebras of certain finite groups. Each of these twisted group algebras contains the group algebra of a Weyl group, which comes from the neutral component of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achar, P.N., Henderson, A.: Geometric Satake, Springer correspondence and small representations. Sel. Math. (N.S.) 19(4), 949–986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achar, P.N., Henderson, A., Juteau, D., Riche, S.: Weyl group actions on the Springer sheaf. Proc. Lond. Math. Soc. (3) 108(6), 1501–1528 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achar, P.N., Sage, D.S.: On special pieces, the Springer correspondence, and unipotent characters. Am. J. Math. 130(5), 1399–1425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arthur, J.: On the transfer of distributions: weighted orbital integrals. Duke Math. J. 99(2), 209–283 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arthur, J.: A note on L-packets. Pure Appl. Math. Q. 2(1), 199–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: Geometric structure in smooth dual and local Langlands correspondence. Jpn. J. Math. 9, 99–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: The local Langlands correspondence for inner forms of \(\text{ SL }_n\). Res. Math. Sci. (2016). https://doi.org/10.1186/s40687-016-0079-4

    Google Scholar 

  8. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: Hecke algebras for inner forms of \(p\)-adic special linear groups. J. Inst. Math. Jussieu 16(2), 351–419 (2017)

    Article  MathSciNet  Google Scholar 

  9. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: The principal series of \(p\)-adic groups with disconnected centre. Proc. Lond. Math. Soc. 114(5), 798–854 (2017)

    Article  MathSciNet  Google Scholar 

  10. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: The noncommutative geometry of inner forms of \(p\)-adic special linear groups (2015). arXiv:1505.04361

  11. Aubert, A.-M., Baum, P.F., Plymen, R.J., Solleveld, M.: Conjectures about \(p\)-adic groups and their noncommutative geometry. Contemp. Math. 691, 15–51 (2017)

    Article  MathSciNet  Google Scholar 

  12. Aubert, A.-M., Moussaoui, A., Solleveld, M.: Graded Hecke algebras for disconnected reductive groups (2016). arXiv:1607.02713 (to appear in Proceedings of the Simons Symposium “Geometric Aspects of the Trace Formula”, 2016)

  13. Bernstein, J., Deligne, P.: Le centre de Bernstein. In: Représentations des groupes réductifs sur un corps local Travaux en cours, Hermann, pp. 1–32 (1984)

  14. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Lecture Notes in Mathematics, vol. 1578. Springer, Berlin (1994)

    MATH  Google Scholar 

  15. Borel, A.: Automorphic L-functions. Proc. Symp. Pure Math 33(2), 27–61 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, vol. 11. Wiley, New York (1962)

    MATH  Google Scholar 

  17. DeBacker, S., Reeder, M.: Depth-zero supercuspidal L-packets and their stability. Ann. Math. (2) 169(3), 795–901 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deligne, P., Kazhdan, D., Vigneras, M.-F.: Représentations des algèbres centrales simples \(p\)-adiques. In: Représentations des groupes réductifs sur un corps local Travaux en cours, Hermann, pp. 33–117 (1984)

  19. Gan, W.-T., Gross, B., Prasad, D.: Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups. Astérisque 346, 1–109 (2012)

    MathSciNet  Google Scholar 

  20. Goresky, M., MacPherson, R.: Intersection homology II. Invent. Math. 72, 77–129 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haines, T.J.: The stable Bernstein center and test functions for Shimura varieties. In: Diamond F, Kassaei PL, Kim M (eds) Automorphic Forms and Galois Representations, London Mathematical Society Lecture Note Series, vol. 415, pp. 118–186. Cambridge University Press, Cambridge (2014)

  22. Henniart, G.: Une caractérisation de la correspondance de Langlands locale pour \(\text{ GL }(n)\). Bull. Soc. Math. Fr. 130(4), 587–602 (2002)

    Article  Google Scholar 

  23. Hiraga, K., Saito, H.: On L-packets for inner forms of \(\text{ SL }_n\). Mem. Am. Math. Soc. 1013, 215 (2012)

    Google Scholar 

  24. Kaletha, T.: Global rigid inner forms and multiplicities of discrete automorphic representations. arXiv:1501.01667 (2015)

  25. Kaletha, T., Minguez, A., Shin, S.-W., White, P.-J.: Endoscopic classification of representations: inner forms of unitary groups. arXiv:1409.3731v3 (2014)

  26. Kazhdan, D., Lusztig, G.: Proof of the Deligne–Langlands conjecture for Hecke algebras. Invent. Math. 87, 153–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math. 81, 973–1032 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kottwitz, R.E.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(3), 611–650 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. In: Sally PJ, Vogan DA (eds) Representation theory and Harmonic Analysis on Semisimple Lie Groups, Mathematics Surveys Monograghs, vol. 31, pp. 101–170. American Mathematical Society, (1989)

  30. Lusztig, G.: Some examples of square-integrable representations of semisimple \(p\)-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983)

    MathSciNet  Google Scholar 

  31. Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75(2), 205–272 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lusztig, G.: Classification of unipotent representations of simple \(p\)-adic groups. Int. Math. Res. Not. 11, 517–589 (1995)

    Article  MathSciNet  Google Scholar 

  33. Lusztig, G.: Classification of unipotent representations of simple p-adic groups. II. Represent. Theory 6, 243–289 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lusztig, G.: Character sheaves on disconnected groups, II. Represent. Theory 8, 72–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lusztig, G., Spaltenstein, N.: On the generalized Springer correspondence for classical groups. In: Hotta R (ed) Algebraic Groups and Related Topics, Advanced Studies in Pure Mathematics, vol. 6, pp. 289–316. North Holland, Amsterdam (1985)

  36. Mizuno, K.: The conjugate classes of unipotent elements of the Chevalley groups \(E_7\) and \(E_8\). Tokyo J. Math. 3, 391–461 (1980)

    Article  MathSciNet  Google Scholar 

  37. Mœglin, C.: Classification et changement de base pour les séries discrètes des groupes unitaires \(p\)-adiques. Pac. J. Math. 233, 159–204 (2007)

    Article  Google Scholar 

  38. Moussaoui, A.: Centre de Bernstein stable et conjecture d’Aubert–Baum–Plymen–Solleveld. Ph.D. thesis, Université Pierre et Marie Curie (2015)

  39. Ram, A., Rammage, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In: Lakshmibai V, Balaji V, Mehta VB, Nagarajan KR, Paranjape K, Sankaran P, Sridharan R (eds) A Tribute to C.S. Seshadri (Chennai 2002), Trends in Mathematics, pp. 428–466. Birkhäuser, Basel (2003)

  40. Reeder, M.: Euler–Poincaré pairings and elliptic representations of Weyl groups and \(p\)-adic groups. Compos. Math. 129, 149–181 (2001)

    Article  Google Scholar 

  41. Reeder, M.: Supercuspidal L-packets of positive depth and twisted Coxeter elements. J. Reine Angew. Math. 620, 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Renard, D.: Représentations des groupes réductifs p-adiques, Cours spécialisés, vol. 17, Société Mathématique de France (2010)

  43. Silberger, A.J., Zink, E.-W.: Langlands classification for L-parameters. arXiv:1407.6494 (2014)

  44. Solleveld, M.: Periodic cyclic homology of reductive \(p\)-adic groups. J. Noncommut. Geom. 3(4), 501–558 (2009)

    Article  MathSciNet  Google Scholar 

  45. Solleveld, M.: Parabolically induced representations of graded Hecke algebras. Algebr. Represent. Theory 15(2), 233–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sorlin, K.: Springer correspondence in non connected reductive groups. J. Reine Angew. Math. 568, 197–234 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44(3), 279–293 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tadić, M.: Induced representations of \(\text{ GL }(n, A)\) for \(p\)-adic division algebras \(A\). J. Reine Angew. Math. 405, 48–77 (1990)

    MathSciNet  Google Scholar 

  49. Thǎńg, Nguyêñ Quôć: On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic. Proc. Jpn. Acad. Ser. A Math. Sci. 87(10), 203–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vogan, D.: The local Langlands conjecture. In: Adams J, Herb R, Kudla S, Li J-S, Lipsman R, Rosenberg J (eds) Representation Theory of Groups and Algebras, Contemporary Mathematics vol. 145, pp. 305–379. American Mathematical Society, Providence (1993)

  51. Zelevinsky, A.V.: Induced representations of reductive p-adic groups II. On irreducible representations of \(\text{ GL }(n)\). Ann. Sci. École Norm. Sup. (4) 13(2), 165–210 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Aubert.

Additional information

The second author gratefully acknowledges support from the Pacific Institute for the Mathematical Sciences (PIMS). The third author is supported by a NWO Vidi-Grant, No. 639.032.528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubert, AM., Moussaoui, A. & Solleveld, M. Generalizations of the Springer correspondence and cuspidal Langlands parameters. manuscripta math. 157, 121–192 (2018). https://doi.org/10.1007/s00229-018-1001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1001-8

Mathematics Subject Classification

Navigation