Skip to main content
Log in

The Navier–Stokes equations with the Neumann boundary condition in an infinite cylinder

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove unique existence of local-in-time smooth solutions of the Navier–Stokes equations for initial data in \(L^{p}\) and \(p\in [3,\infty )\) in an infinite cylinder, subject to the Neumann boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K.: Vanishing viscosity limits for axisymmetric flows with boundary. arXiv:1806.04811

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  4. Akiyama, T., Kasai, H., Shibata, Y., Tsutsumi, M.: On a resolvent estimate of a system of Laplace operators with perfect wall condition. Funkc. Ekvac. 47, 361–394 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bardos, C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MathSciNet  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin, New York (1976)

    Book  Google Scholar 

  7. Bourguignon, J.P., Brezis, H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  Google Scholar 

  8. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Clément, P., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces. In: Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), pp 67–87. Dekker, New York (2001)

    Chapter  Google Scholar 

  10. Denk, R., Hieber, M., Prüss, J.: \(R\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Duong, X.T.: \(H_\infty \) functional calculus of elliptic operators with \(C^\infty \) coefficients on \(L^p\) spaces of smooth domains. J. Aust. Math. Soc. Ser. A 48, 113–123 (1990)

    Article  Google Scholar 

  12. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 2(92), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  14. Fabes, E.B., Lewis, J.E., Rivière, N.M.: Boundary value problems for the Navier–Stokes equations. Am. J. Math. 99, 626–668 (1977)

    Article  MathSciNet  Google Scholar 

  15. Farwig, R., Ri, M.-H.: An \(L^q(L^2)\)-theory of the generalized Stokes resolvent system in infinite cylinders. Stud. Math. 178(3), 197–216 (2007)

    Article  Google Scholar 

  16. Farwig, R., Ri, M.-H.: The resolvent problem and \(H^\infty \)-calculus of the Stokes operator in unbounded cylinders with several exits to infinity. J. Evol. Equ. 7, 497–528 (2007)

    Article  MathSciNet  Google Scholar 

  17. Farwig, R., Ri, M.-H.: Stokes resolvent systems in an infinite cylinder. Math. Nachr. 280, 1061–1082 (2007)

    Article  MathSciNet  Google Scholar 

  18. Farwig, R., Ri, M.-H.: Resolvent estimates and maximal regularity in weighted \(L^q\)-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10, 352–387 (2008)

    Article  MathSciNet  Google Scholar 

  19. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes equations. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  20. Geissert, M., Heck, H., Trunk, C.: \(H^\infty \)-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete Contin. Dyn. Syst. Ser. S 6, 1259–1275 (2013)

    Article  MathSciNet  Google Scholar 

  21. Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  Google Scholar 

  22. Kato, T.: Nonstationary flows of viscous and ideal fluids in \({ R}^{3}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  Google Scholar 

  23. Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  Google Scholar 

  24. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York, Heidelberg (1972)

    Book  Google Scholar 

  25. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems. In: Brezis, H. (ed.) Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser, Basel (1995)

    Google Scholar 

  26. McIntosh, A.: Operators which have an \(H_\infty \) functional calculus. In: Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Volume 14 of Proceedings of the Centre Mathematical Analysis Australian National University, pp. 210–231. Australian National University, Canberra (1986)

  27. Miyakawa, T.: The \(L^{p}\) approach to the Navier–Stokes equations with the Neumann boundary condition. Hiroshima Math. J. 10, 517–537 (1980)

    Article  MathSciNet  Google Scholar 

  28. Miyakawa, T.: On the initial value problem for the Navier–Stokes equations in \(L^{p}\) spaces. Hiroshima Math. J. 11, 9–20 (1981)

    Article  MathSciNet  Google Scholar 

  29. Miyakawa, T., Yamada, M.: Planar Navier–Stokes flows in a bounded domain with measures as initial vorticities. Hiroshima Math. J. 22, 401–420 (1992)

    Article  MathSciNet  Google Scholar 

  30. Muramatu, T.: On Besov spaces and Sobolev spaces of generalized functions definded on a general region. Publ. Res. Inst. Math. Sci. 9, 325–396 (1974)

    Article  MathSciNet  Google Scholar 

  31. Seeley, R.: Norms and domains of the complex powers \(A_{B}z\). Am. J. Math. 93, 299–309 (1971)

    Article  MathSciNet  Google Scholar 

  32. Sohr, H.: The Navier–Stokes equations. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2001)

    Book  Google Scholar 

  33. Sohr, H., Thäter, G.: Imaginary powers of second order differential operators and \(L^q\)-Helmholtz decomposition in the infinite cylinder. Math. Ann. 311, 577–602 (1998)

    Article  MathSciNet  Google Scholar 

  34. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  35. Swann, H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in \(R_{3}\). Trans. Am. Math. Soc. 157, 373–397 (1971)

    MATH  Google Scholar 

  36. Tanabe, H.: Equations of Evolution, Volume 6 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1979)

    Google Scholar 

  37. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32–43 (1975)

    Article  MathSciNet  Google Scholar 

  38. Vishik, M.I., Komech, A.I.: Individual and statistical solutions of a two-dimensional Euler system. Dokl. Akad. Nauk SSSR 261, 780–785 (1981)

    MathSciNet  MATH  Google Scholar 

  39. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is partially supported by JSPS through the Grant-in-aid for Young Scientist (B) 17K14217, Scientific Research (B) 17H02853 and Osaka City University Strategic Research Grant 2018 for young researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, K. The Navier–Stokes equations with the Neumann boundary condition in an infinite cylinder. manuscripta math. 160, 359–383 (2019). https://doi.org/10.1007/s00229-018-01102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-01102-9

Mathematics Subject Classification

Navigation