Having the same wild ramification is preserved by the direct image

  • Yuri Yatagawa


Let S be the spectrum of an excellent henselian discrete valuation ring of residue characteristic p and X a separated scheme over S of finite type. Let \(\Lambda \) and \(\Lambda '\) be finite fields of characteristics \(\ell \ne p\) and \(\ell '\ne p\) respectively. For elements \(\mathcal {F}\in K_{c}(X,\Lambda )\) and \(\mathcal {F}'\in K_{c}(X,\Lambda ')\) of the Grothendieck groups of the categories of constructible sheaves of \(\Lambda \)-modules and \(\Lambda '\)-modules on X respectively, we introduce the notion that \(\mathcal {F}\) and \(\mathcal {F}'\) have the same wild ramification and prove that this condition is preserved by four of Grothendieck’s six operations except the derived tensor product and \(R \mathcal {H}om\).

Mathematics Subject Classification

Primary 14F20 Secondary 14E22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deligne, P.: La formule de dualité globale, Théorie des Topos et Cohomologie Étale des Schémas, SGA 4, Springer Lecture Notes in Mathematics, p. 305Google Scholar
  2. 2.
    Deligne, P.: Théorèmes de finitude en cohomologie \(\ell \)-adique, Chomologie étale, SGA\(4\frac{1}{2}\), Springer Lecture Notes in Mathematics, p. 569Google Scholar
  3. 3.
    Illusie, L.: Théorie de Brauer et caractéristique d’Euler-Poincaré, d’après Deligne. Caractéristique d’Euler-Poincaré, Exposé VIII, Astérisque 82(83), 161–172 (1981)MATHGoogle Scholar
  4. 4.
    Kato, H.: Wild ramification and restrictions to curves (preprint)Google Scholar
  5. 5.
    Laumon, G.: Comparaison de caractéristiques d’Euler-Poincaré en cohomologie l-adique. C. R. Acad. Sci. Paris Sér. I Math. 292(3), 209–212 (1981)MathSciNetMATHGoogle Scholar
  6. 6.
    Saito, T.: The characteristic cycle and the singular support of a constructible sheaf. Invent. Math. 207(2), 597–695 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Saito, T., Yatagawa, Y.: Wild ramification determines the characteristic cycle. Annales Scientifiques de l’Ecole Normale Supérieure, 50, fascicule 4, 1065–1079 (2017)Google Scholar
  8. 8.
    Serre, J.-P.: Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)CrossRefGoogle Scholar
  9. 9.
    Vidal, I.: Théorie de Brauer et conducteur de Swan. J. Algebr. Geom. 13(2), 349–391 (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Vidal, I.: Courbes nodales et ramification sauvage virtuelle. Manuscripta Math. 118(1), 43–70 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations